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To simulate the nuclide evolution process in a nuclear reactor core, the Transmutation Trajectory Analysis
(TTA) method solves the depletion equations by decomposing the depletion system into a number of
linear chains and then solving each one analytically. In this paper, two improvements are proposed for
TTA to obtain better efficiency. Firstly, the pseudo node evaluation for linear chain cutoff check has been
removed. Instead, a time-averaged nuclide number density is employed as the chain termination criteria,
which in theory can improve the computational efficiency by a factor of two. Secondly, a new recursive
formula has been derived to replace the legacy direct solution formula for solving the linear chains.
Numerical tests have been carried out based on a typical PWR fuel cycle to demonstrate that these
improvements enable the TTA method to solve decay problems efficiently and accurately.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Nuclear energy release is accompanied by nuclides depletion
process. The variety of nuclides vary in their toxicities, decay
properties and microscopic cross sections. Therefore, predicting
the time evolution of nuclide inventories is of vital importance in
nuclear applications. Actually, the depletion process is coupled
together with both neutronics and thermal–hydraulics processes.
Within a small enough time step, however, these three processes
can be treated independently. Although the depletion process is
quite complicated, there are governing equations called depletion
equations describing the variation rate of nuclide number density
which equal the difference of rate of production and consumption.
These equations can be written as a set of first order ordinary dif-
ferential equations assuming constant microscopic reaction rates
(Stamm’ler and Abbate, 1983) for each depletion region during
small time steps. The coefficient matrix of the depletion equations,
or depletion matrix, describes the nuclide transformation relations.
For example, each of the diagonal entries stands for the disappear-
ance of the corresponding nuclide, while each of the off-diagonal
entries represents the contribution between two different nuclides.

There are two major types of methods which can be used for
solving the depletion equations with constant coefficients:
matrix exponential methods and linear chain methods. In general,
computation of matrix exponential in itself constitutes a rich field
of study (Moler and Van Loan, 2003). Several methods have been
introduced to solving depletion equations, such as the Taylor
expansion and truncation method with secular equilibrium
assumed for short-lived nuclides (Croff, 1980; Hermann and
Westfall, 1998), and Chebyshev rational approximation method
(CRAM) (Pusa and Leppänen, 2010; Pusa, 2011). Taylor expansion
and truncation method is based on the definition of the matrix
exponential in Taylor series form. CRAM is related to the rational
approximation of exponential function (Trefethen et al., 2006).
Other than these matrix approaches, linear chain methods offer a
direct solution method. With little computational overhead, this
approach explicitly models nuclide chains and enumerates all
important ones. A more recent general analytical solution by Cet-
nar, referred to as Transmutation Trajectory Analysis method
(TTA) (Cetnar, 2006) has remedied the identical vanishing coeffi-
cients issue.When this solution is used, the only approximation left
is the termination of linear chains of low importance. The term lin-
ear chain here refers to a simple depletion process in which each
nuclide has at most only one predecessor and at most only one
daughter nuclide. Each of these linear chains is governed by analyt-
ically solvable bi-diagonal depletion equations, or bi-diagonal
Bateman equations. The solution of the original depletion equations
can be obtained as a superposition of those analytical solutions.

The depletion problems could be classified into two different
types, namely the decay problems and the burnup problems
(Isotalo, 2013), based on the absence or presence of neutron flux.
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For a pure decay system, the disassembly of the directed graph
representing the depletion matrix called linearization would be
exact since a finite number of linear chains with finite length will
be equal to the original depletion equations according to the super-
position principal and the absence of closed transformation cycles.
The latter condition is insured, since a nuclide could not go through
a series of energy emitting decay processes and return to itself pre-
cisely with an unchanged mass. However, for a burnup system
with neutron-induced nuclear reactions involved, there might be
closed transformation cycles, thus a finite or even infinite number
of linear chains with infinite length are necessary for maintaining
the equivalence between the original depletion equations and the
series of linear chains. Practically, not all of these linear chains
are important enough to be considered however, because the num-
ber of nuclides transferred through the linear chain decreases
rapidly along the chain. Consequently, a cutoff check is carried
out to determine the effective end of each linear chain growing
process. Considering that the determination of linear chain solu-
tions contributes most to the computational cost, the efficiency
could be improved by reducing the number and the length of cal-
culated linear chains or finding more efficient analytic formulas to
resolve the nuclide number densities for each of these linear
chains. Such an efficiency improvement would accumulate consid-
erable saving on computational effort in applications that demand
large numbers of depletion calculations.

In this paper, two improvements concerning efficiency of TTA
are proposed. Firstly, a time-averaged nuclide number density is
employed to simplify the linear chain cutoff check, which is usually
done by calculating the number density of a stable node appended
at the end of the chain. In this paper, this artificial stable node is
referred to as a pseudo node. Secondly, in terms of the analytic
solution, a recursive formula, which is mathematically equivalent
with the legacy direct formula, is derived and implemented to
reduce computational effort spent on solving linear chains. Numer-
ical tests have been carried out based on a typical PWR fuel cycle. It
has been demonstrated that these improvements could make the
TTA method run faster by a factor of about 8 while maintaining
the same computational accuracy. While it has been shown that
the burnup problems could be solved elegantly by CRAM (Pusa
and Leppänen, 2010; Pusa, 2011; Isotalo and Aarnio, 2011), the
TTA method has better performance for solving decay problems,
and could be viewed as a complement with respect to CRAM.

The paper is organized as the following. Section 2 derives the
theory and formulas of the two improvements in detail. Numerical
results and discussions of three selected test cases based on a PWR
fuel cycle are given in Section 3. Finally, conclusions are drawn in
Section 4.

2. Theoretical model

The TTA method finds the final solution by summing up contri-
butions from all linear chains. The basic building element of linear
chain is called node, and each root node corresponds to a nuclide
with non-zero initial number density. The level of a node is defined
as its distance from the root node. These concepts are illustrated in
Fig. 1, in which only nuclide a is assigned a non-zero initial number
density for the sake of simplicity. The linear chain searching pro-
cess is in a form of three levels of iterations. The outermost itera-
tion selects the nuclides that have non-zero initial nuclide
number densities as root nodes. The second level iteration is com-
posed of two innermost iterations: one for growing the linear chain
along the transfer relationships until being terminated; and the
other for identifying the restart node, which is defined as the node
that has unexplored successors and is closest to the last node.
Between the two innermost iterations, the nodes after restart node
of the linear chain are taken into account to the contributions of
the solution, since they belong to the newly explored transmuta-
tion path. Termination of linear chain in the growing process hap-
pens when the last node has no successors or the importance of the
linear chain falls below a certain value (cutoff criterion). The sec-
ond level iteration ends when the restart node cannot be found.
The pseudo code of the linear chain searching process is provided
in Appendix A under Algorithm 1.

The governing equations for each linear chain are the
bi-diagonal Bateman equations:

dN1ðtÞ
dt

¼ �k1N1ðtÞ ð1aÞ
dNiþ1ðtÞ

dt
¼ kiþ1;iNiðtÞ � kiþ1Niþ1ðtÞ ð1 6 i < nÞ ð1bÞ

where NiðtÞ refers to the number density (cm�3) of the ith node, ki is
the vanishing coefficient of ith node nuclide (s�1), while kiþ1;i stands
for the transfer coefficient from the ith node nuclide to (i + 1)th
node nuclide, defined as:

ki ¼ kdecayi þ ra;i/

kiþ1;i ¼ biþ1;ik
decay
i þ riþ1;i/

ð2Þ

kdecayi is the decay constant, ra;i is the single group microscopic
absorption cross section, biþ1;i and riþ1;i are the branching ratio
and the single group microscopic cross section that produces
(i + 1)th node nuclide respectively, / is the neutron flux.

2.1. Improvement on the cutoff check

Toavoid linear chainsof infinite length, orunnecessary linear chain
nodes, a criterion has to be employed to stop the searching process for
each linear chain. The essential measurement is the linear chain pas-
sage (Cetnar, 2006; Isotalo and Aarnio, 2011), which is defined as the
number density that goes through the last transfer relation:

Pn ¼
Z tf

0
knþ1;n � NnðtÞdt ð3Þ

where the linear chain is cut between the nth and the (n + 1)th
nodes, and knþ1;n is the corresponding transfer coefficient. It offers
an estimate of the remaining number densities that will be
neglected. Thus, the linear chain should be terminated once Pn falls
below the cutoff criterion determined by:

ecutoff ¼ cutoff � Ntotalð0Þ ð4Þ
where Ntotalð0Þ represents the initial total nuclide number density.

The independent pseudo node approach, which is implemented
initially, appends a pseudo node with kpseudo ¼ 0:0 and
kpseudo;n ¼ 1:0 after the nth node of the linear chain. Then, it can
be shown that Pn equals knþ1;nNpseudoðtf Þ. Since most nodes are
not stable, and require pseudo node calculations, the total comput-
ing effort is nearly doubled.

An alternative approach is to determine linear chain passage
from a time-averaged nuclide number density:

NnðtÞ ¼ 1
t

Z t

0
NnðsÞds ð5Þ

As will be discussed latter, NnðtÞ could be expanded as the sum of
terms taking the form tke�kj t . The integrals of these terms could be
pre-calculated and stored for all possible combinations of kj and k
up to a very limited number of values (3 is enough in most cases).
Compared to the independent pseudo node approach, the computa-
tion solving the pseudo node is saved, and additional integration is
required. The time saving effect dominates in practice, because the
integration is merely based on weighted summation of pre-
calculated values, therefore the computational time is approximately



Fig. 1. Illustration of linear chains and nodes.
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halved. Furthermore, the time-averaged nuclide densities can also be
usedoccasionally to calculate thenumberof particular type reactions
occurred during a time step (Hermann and Westfall, 1998).

2.2. Direct formulas of the analytic solution

To solve the bi-diagonal Bateman equations analytically and
efficiently, there are several proposed analytical formulas
(Cetnar, 2006; Bateman, 1910; Rubinson, 1949; Hamawi, 1971;
Miles, 1981; Dreher, 2013). Mathematically, there exists a unique
analytical solution, but how to present it or in which form it is
implemented into a code varies. Each different form affects compu-
tational efficiency. Traditionally, a direct formula is usually
employed. Due to the fact that every node except the root node
is rooted on a predecessor node, a recursive formula that makes
use of stored results is likely to be the most efficient. But unlike
any previously proposed recursive formulas (Hamawi, 1971;
Miles, 1981), the one developed here only depends on one sub-
chain (the original chain less the last node) solution.

With the following conditions added to Eq. (1):

kiþ1;i ¼ ki ði P 1Þ ð6aÞ
Nið0Þ ¼ 0 ði P 2Þ ð6bÞ

Bateman first derived a direct formula of the solution by means
of Laplace transformation (Bateman, 1910). The Bateman formula
can be presented as following, provided that the first i vanishing
coefficients are distinct from each other:

NiðtÞ ¼ N1ð0Þ
ki

Xi

j¼1
kjai;je�kj t

ai;j ¼
Yi
k¼1
k–j

kk
kk � kj

ð7Þ

For arbitrarily distributed vanishing coefficients, Cetnar
obtained a direct formula of the solution by eliminating the infini-
ties in the Bateman formula though limit operations (Cetnar, 2006):

NiðtÞ ¼ N1ð0Þ
ki

Xai
j¼1
ekjai;je�

ek j t �Xbi;j
k¼0

ðekjtÞ
k

k!
�Xi;j;bi;j�k

ai;j ¼
Yai
p¼1
p – j

ekpekp � ekj

 !mi;p

Xi;j;k ¼
Xk
h1¼0
� � �

Xk
hj�1¼0

Xk
hjþ1¼0

� � �
Xk
hai¼0

�
Yai
p¼1
p–j

hp þ bi;p

bi;p

� � ekjekj � ekp

 !hp

d k;
Xai
p¼1
p–j

hp

0B@
1CA

ð8Þ
where the first i vanishing coefficients have only ai distinct values ofekj with each of them having multiplicity of mi;j, and bi;j ¼ mi;j � 1.
These distinct vanishing coefficients are arranged in ascending
order according to their position of their first occurrence.

2.3. Recursive formula of the analytic solution

According to the theory of differential equations (Leonard,
1996), the solution of the ith node takes the following form:

NiðtÞ ¼
Xai
j¼1

Xbi;j
k¼0

ci;j;kt
ke�ek j t ð9Þ

For the first node described by Eq. (1a), the associated variables are
as following:

a1 ¼ 1 b1;1 ¼ 0ek1 ¼ k1 c1;1;0 ¼ N1ð0Þ
ð10Þ

For the other nodes described by Eq. (1b), substituting the solu-
tion form Eq. (9) yields the following equation:

Xaiþ1
j¼1

Xbiþ1;j
k¼0

ktk�1 � ekjtk
� �

ciþ1;j;ke
�ek j t

¼ kiþ1;i
Xai
j¼1

Xbi;j
k¼0

ci;j;kt
ke�ek j t � kiþ1

Xaiþ1
j¼1

Xbiþ1;j
k¼0

ciþ1;j;kt
ke�ek j t ð11Þ

Since terms tke�ek j t with different k and ekj values are linearly
independent. The above equation could be decomposed into a ser-
ies of linear algebraic equations giving out the relations between
coefficients ciþ1;�;� and ci;�;� (the asterisk sign indicates arbitrary
values).

For those j 2 f1;2; . . . ; aig that satisfy ekj – kiþ1, the identity
biþ1;j ¼ bi;j holds, and the following relations can be obtained from
Eq. (11):

ðkiþ1 � ekjÞciþ1;j;biþ1;j ¼ kiþ1;ici;j;bi;j
ðkiþ1 � ekjÞciþ1;j;k þ ðkþ 1Þciþ1;j;kþ1 ¼ kiþ1;ici;j;k ð0 6 k < biþ1;jÞ

ð12Þ
If there exists ĵ 2 f1;2; . . . ; aig satisfying ek ĵ ¼ kiþ1, then aiþ1 ¼ ai

and biþ1;̂j ¼ bi;̂j þ 1 are valid. The relations below are then
decomposed from Eq. (11):

kciþ1;̂j;k ¼ kiþ1;ici;̂j;k�1 ð0 < k 6 biþ1;̂jÞ ð13Þ

Setting t ¼ 0 yields
Paiþ1

j¼1 ciþ1;j;0 ¼ Niþ1ð0Þ. The last free variable ciþ1;̂j;0
is settled eventually:
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ciþ1;̂j;0 ¼ Niþ1ð0Þ �
Xaiþ1
j¼1
j–ĵ

ciþ1;j;0 ð14Þ

If kiþ1 is distinct from all previously encountered vanishing coef-
ficients, the following identities hold true: (1) aiþ1 ¼ ai þ 1, (2)

biþ1;aiþ1 ¼ 0, (3) ekaiþ1 ¼ kiþ1. According to initial number density
condition of (i + 1)th node, the following relation must be satisfied:

ciþ1;aiþ1 ;0 ¼ Niþ1ð0Þ �
Xai
j¼1

ciþ1;j;0 ð15Þ

Consequently, for all j where ekj – kiþ1:

biþ1;j ¼ bi;j

ciþ1;j;biþ1;j ¼
kiþ1;ici;j;bi;j
kiþ1 � ekj

ciþ1;j;k ¼
kiþ1;ici;j;k � ðkþ 1Þciþ1;j;kþ1

kiþ1 � ekj

ð0 6 k < biþ1;jÞ

ð16Þ

If kiþ1 coincides with one of the previously encountered vanish-

ing coefficients, that is 9̂j 2 f1;2; . . . ; aig; ek ĵ ¼ kiþ1, then:

aiþ1 ¼ ai biþ1;̂j ¼ bi;̂j þ 1

ciþ1;̂j;k ¼
kiþ1;ici;̂j;k�1

k
ð0 < k 6 biþ1;̂jÞ

ciþ1;̂j;0 ¼ Niþ1ð0Þ �
Xaiþ1
j¼1
j–ĵ

ciþ1;j;0

ð17Þ

Otherwise kiþ1 is a new vanishing coefficient, which means

8̂j 2 f1;2; . . . ; aig; ek ĵ – kiþ1, then:

aiþ1 ¼ ai þ 1 biþ1;aiþ1 ¼ 0

ekaiþ1 ¼ kiþ1 ciþ1;aiþ1 ;0 ¼ Niþ1ð0Þ �
Xai
j¼1

ciþ1;j;0
ð18Þ

The recursive formula is composed of Eq. (10) and Eqs. (16)–
(18). It does not require the conditions of Eq. (6) to be satisfied,
and could be even generalized to solve triangular Bateman equa-
tions in a once-through manner as presented in Appendix B.

2.4. Equivalence proof between the direct and recursive formulas

The analytic solution to bi-diagonal Bateman equations for each
linear chain can be constructed from either the direct formula in Sec-
tion 2.2, or recursive formula in Section 2.3. In order to prove the
equivalence between them for a linear chain that satisfies the condi-
tions of Eq. (6), it is verified that the two formulas produce identical
solutions for the first node, and it is shown that solutions to the ith
and (i + 1)thnodes obtainedby direct formula complywith the recur-
sive formula. For the sake of notational simplicity, Ki; âi;j;Hi;j;k

(definedasaCartesianproductof sets),Pi;j;kðhÞand X̂i;j;k aredefinedas:

Ki ¼
Yi
j¼1

kj ¼
Yai
j¼1
ekbi;jþ1
j

âi;j ¼
Yai
p¼1
p–j

1ekp � ekj

 !bi;pþ1

Hi;j;k ¼
Yj�1
p¼1
f0;1; . . . ; kg � f0g �

Yai
p¼jþ1
f0;1; . . . ; kg

Pi;j;kðhÞ ¼
Yai
p¼1
p–j

hp þ bi;p

bi;p

� �
1ekj � ekp

 !hp

d k;
Xai
p¼1

hp

 !

X̂i;j;k ¼
X

h2Hi;j;k

Pi;j;kðhÞ

ð19Þ
Let Ci;j;k denotes the coefficient associated with term tke�ek j t in
the solution to ith node produced by Cetnar formula. Then Ci;j;k

could be expressed as:

Ci;j;k ¼ N1ð0Þ
k!ki

Kiâi;jX̂i;j;bi;j�k ð20Þ

First, it is trivial to verify that C1;1;0 ¼ c1;1;0 ¼ N1ð0Þ, which
means that the two formulas produce identical solutions for the
first node.

The following four identities are relevant to the inductive part
of proof:

(1) For j 2 f1;2; . . . ; aig, it is obvious that the following equation
holds:
X̂i;j;0 ¼ 1 ð21Þ

(2) For ĵ 2 f1;2; . . . ; aig satisfying ek ĵ ¼ kiþ1, it is also obvious that
the following equation holds:

X̂iþ1;̂j;k ¼ X̂i;̂j;k ð22Þ

(3) For i P 2, the initial condition in Eq. (6b) leads to the
following:

Xai
j¼1

âi;jX̂i;j;bi;j ¼ 0 ð23Þ

(4) For j 2 f1;2; . . . ; aig such that ekj – kiþ1:

X̂iþ1;j;k ¼ X̂i;j;k � X̂iþ1;j;k�1

kiþ1 � ekj

ð24Þ

Eq. (24) is verified under two different conditions:

If 9̂j 2 f1;2; . . . ; aig; ek ĵ ¼ kiþ1, then aiþ1 ¼ ai; biþ1;̂j ¼ bi;̂j þ 1. For

those j that j– ĵ:

X̂iþ1;j;k � X̂i;j;k ¼
X

h2Hiþ1;j;k
ĥ
j
–0

Piþ1;j;kðhÞ þ
X

h2Hiþ1;j;k
ĥ
j
¼0

Piþ1;j;kðhÞ

�
X
h2Hi;j;k
ĥ
j
¼0

Pi;j;kðhÞ þ
X
h2Hi;j;k
ĥ
j
–0

Pi;j;kðhÞ

0BBB@
1CCCA

¼
X

h2Hiþ1;j;k
ĥ
j
–0

hĵ þ biþ1;̂j

biþ1;̂j

0@ 1A� hĵ þ bi;̂j

bi;̂j

0@ 1A24 35

� 1ekj � ek ĵ

 !hĵ

Pi;j;k�hĵ ðh� hĵeĵÞ ¼
X

h2Hiþ1;j;k
ĥ
j
–0

ðhĵ � 1Þ þ biþ1;̂j

biþ1;̂j

0@ 1A

� 1ekj � ek ĵ

 !hĵ

Pi;j;k�hĵ ðh� hĵeĵÞ ¼
1ekj � ek ĵ

 ! X
h2Hiþ1;j;k�1

Piþ1;j;k�1ðhÞ

¼ X̂iþ1;j;k�1ekj � ek ĵ

¼ � X̂iþ1;j;k�1

kiþ1 � ekj

ð25Þ

Otherwise, aiþ1 ¼ ai þ 1; ekaiþ1 ¼ kiþ1. For all j 2 f1;2; . . . ; aig:
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X̂iþ1;j;k � X̂i;j;k ¼
X

h2Hiþ1;j;k

Piþ1;j;kðhÞ �
X

h2Hi;j;k

Pi;j;kðhÞ ¼
X

h2Hiþ1;j;k
haiþ1–0

Piþ1;j;kðhÞ

¼
X

h2Hiþ1;j;k�1

1ekj � ekaiþ1

Piþ1;j;k�1ðhÞ ¼ X̂iþ1;j;k�1ekj � ekaiþ1

¼ � X̂iþ1;j;k�1

kiþ1 � ekj

ð26Þ

Secondly, it is verified, as shown below, that coefficients appear
in the direct formula also satisfy Eqs. (16)–(18).

(1) For Eq. (16) recall that j 2 f1;2; . . . ; aig and ekj – kiþ1, apply
Eq. (21):
Ciþ1;j;biþ1;j ¼
N1ð0Þ

biþ1;j!kiþ1
Kiþ1âiþ1;jX̂iþ1;j;0

¼ N1ð0Þ
bi;j!kiþ1

kiþ1Ki
âi;j

kiþ1 � ekj

X̂i;j;0

¼ ki

kiþ1 � ekj

N1ð0Þ
bi;j!ki

Kiâi;jX̂i;j;0 ¼
kiCi;j;bi;j

kiþ1 � ekj

ð27Þ
Making use of biþ1;j ¼ bi;j and Eq. (24):
Ciþ1;j;k ¼ N1ð0Þ
k!kiþ1

Kiþ1âiþ1;j X̂i;j;bi;j�k �
X̂iþ1;j;bi;j�ðkþ1Þ

kiþ1 � ekj

 !

¼ ki

kiþ1 � ekj

N1ð0Þ
k!ki

Kiâi;jX̂i;j;bi;j�k

� kþ 1

kiþ1 � ekj

N1ð0Þ
ðkþ 1Þ!kiþ1 Kiþ1âiþ1;jX̂iþ1;j;bi;j�ðkþ1Þ

¼ kiCi;j;k � ðkþ 1ÞCiþ1;j;kþ1

kiþ1 � ekj

ð0 6 k < biþ1;jÞ ð28Þ

(2) For Eq. (17), if 9̂j 2 f1;2; . . . ; aig; ek ĵ ¼ kiþ1, consequently

aiþ1 ¼ ai; biþ1;̂j ¼ bi;̂j þ 1. Using Eq. (22) and Eq. (23) in the
following identities:

Ciþ1;̂j;k ¼
N1ð0Þ
k!kiþ1

Kiþ1âiþ1;̂jX̂iþ1;̂j;biþ1;̂j�k

¼ ki
k

N1ð0Þ
ðk� 1Þ!ki Kiâi;̂jX̂i;̂j;bi;̂j�ðk�1Þ

¼ kiCi;̂j;k�1
k

ð0 < k 6 biþ1;̂jÞ ð29Þ

Ciþ1;̂j;0 ¼
N1ð0Þ
kiþ1

Kiþ1âiþ1;̂jX̂iþ1;̂j;biþ1;̂j

¼ N1ð0Þ
kiþ1

Kiþ1 �
Xaiþ1
j¼1
j–ĵ

âiþ1;jX̂iþ1;j;biþ1;j

0B@
1CA

¼ �
Xaiþ1
j¼1
k–ĵ

Ciþ1;j;0 ð30Þ

(3) For Eq. (18), if 8̂j 2 f1;2; . . . ; aig; ek ĵ – kiþ1, the following iden-
tity could be obtained similarly as the above equation:

Ciþ1;aiþ1 ;0 ¼ �
Xai
j¼1

Ciþ1;j;0 ð31Þ

2.5. Analysis of the improved efficiency

Various factors could affect the actual computational efficiency,
such as the numbers of different kinds of arithmetic operation and
cache efficiency, an inclusive efficiency analysis will be quite
complex and even dependent on machine. Instead, a preliminary
analysis based on the numbers of multiplications and divisions is
carried out. The cost of exponential evaluations is not considered,
because the required number of evaluations is limited to several
times of the number of nuclides as indicated above, which is neg-
ligible with respect to the numbers of multiplications and divisions
in practice.

For the former practice of cutoff check, a level k + 1 pseudo node
is calculated after adding a level k actual node. It can be predicted
that nearly half of the time consumption could be saved with
newly proposed cutoff check implemented.

For the analysis of different analytic formulas. Let x and y
denote the costs of multiplication and division respectively. To find
the solution of a level k node, the computational effort required by
the Bateman formula (Eq. (7)) could be expressed as
3kxþ kðk� 1Þy, and the Cetnar formula (Eq. (8)) is generally less
efficient than Bateman formula, while the recursive formula needs
at most ð3k� 2Þxþ ðk� 1Þy. The cost of direct formula is more
expensive, because the recursive formula has the advantage of
making use of predecessor node solution. For a particular TTA solu-
tion, define the following quantities:

J1 ¼
PLmax

k¼1kIk
It

J2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPLmax

k¼1k
2Ik

It

s ð32Þ

where Ik stands for the number of level k nodes, It is the total num-
ber of nodes.

Let f 1ðx; yÞ and f 2ðx; yÞ express the overall costs of multiplica-
tions and divisions of direct and recursive formulas respectively:

f 1ðx; yÞ �
XLmax

k¼1
ð3kxþ kðk� 1ÞyÞIk ¼ It 3J1xþ ðJ22 � J1Þy

� �
ð33Þ

f 2ðx; yÞ �
XLmax

k¼1
ðð3k� 2Þxþ ðk� 1ÞyÞIk

¼ Itðð3J1 � 2Þxþ ðJ1 � 1ÞyÞ ð34Þ
For example, test case 1 in the following section with cutoff being
10�20 results in J1 � 9:4623 and J2 � 9:8373. Set y ¼ 4x– 0, where
the value of 4 comes from simple tests. The speedup factor of recur-
sive formula against the Bateman formula is estimated as the ratio
f 1=f 2, which is approximately 6:27. When compared to Cetnar for-
mula, the estimate will be slightly greater according to a previous
study (Isotalo and Aarnio, 2011).

3. Numerical results

Based on the above theory, a numerical code has been devel-
oped. For the purpose of verifying the methods and codes, numer-
ical results are provided in this section.

The ORIGEN2 libraries (Croff, 1980) are chosen as the data
sources of depletion equations. There are 1307 nuclides and 1421
transfer relations in the decay library. The cross section library is
subject to PWR type, with 466 nuclides having defined cross sec-
tions. And there are 8 fissile nuclides and 810 fission products.
All calculations are performed on a single thread 3.2 GHz E6700
processor.

Three test cases are defined, and they are sketched in Fig. 2. In
case 1, the fresh composition of 235U, 238U and 16O with fraction
ratio 0.034:0.966:2.0 is irradiated for 50 days by a uniform neutron
flux of 3� 1014ðcm�2 � s�1Þ. The used and discharged fuel composi-
tions are obtained from fresh composition after irradiations of 300
and 1500 days respectively with the presence of the same neutron
flux as case 1. Then, in case 2, the used fuel composition is irradi-



Fig. 2. Sketch of defined test cases.

Fig. 3. Relative errors for individual nuclides and error bounding curves in CASE 1.

Fig. 4. Relative errors for individual nuclides and error bounding curves in CASE 2.
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ated for 50 days; and in case 3, the discharged fuel decays for one
million years. Compared with case 1, case 2 features the composi-
tion changing effect, and case 3 reflects the problem type changing
effect additionally.

Each of the designation of solvers contains two parts, the name
of the method and the implementation details. Three methods are
compared, which are the TTA method (Cetnar, 2006), CRAM (Pusa
and Leppänen, 2010; Pusa, 2011) and QRAM (Quadrature Rational
Approximation Method) (Pusa, 2011; Trefethen et al., 2006). The
implementation details take the form of ‘‘D/F” + ‘‘0/1” + ‘‘0/1”,
where ‘‘D” and ‘‘F” respectively stand for double precision and
extended double precision, ‘‘1” or ‘‘0” indicate the implementation



Fig. 5. Relative errors for individual nuclides and error bounding curves in CASE 3.

Table 1
Performance of various solvers and selected parameters of linear chains in CASE 1.

Methods Time Characters of processed linear chains The maximum Ei value for i satisfying Fref ;i 2
Part 1 Part 2 (ms) Ct Lave Lmax [�5,0) [�10,�5) [�20,�10)
TTA [10�15] (D00) 77.30 20498 8.8094 16 �7.9819 �4.0320 > 0

(D10) 37.60 20,498 8.8094 16 �7.9819 �4.0320 > 0
(D11) 10.80 20,498 8.8094 16 �7.9819 �4.0320 > 0

TTA [10�20] (D00) 645.8 133,508 10.4179 21 �11.3625 �7.2417 > 0
(D10) 312.6 133,362 10.4116 20 �11.3678 �7.4208 �0.2903
(D11) 74.26 133,670 10.4221 20 �11.0767 �6.9905 �0.3370

TTA [10�20] (F00) 15,630 133,344 10.4110 20 �12.1997 �8.1636 �0.4280
(F11) 2345 133,344 10.4110 20 �12.1997 �8.1636 �0.4280

TTA [10�30] (F00) 9.394E5 4,494,055 13.9549 26 �14.6170 �11.4003 �8.4262
(F11) 1.036E5 4,494,055 13.9549 26 �14.6170 �11.4003 �8.4262

CRAM [14] (D) 4.742 N/A �11.4616 �6.9242 �3.6610
QRAM [64] (F) 2387 N/A Reference solution
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or no implementation of the two proposed improvements. For
instance, TTA(F10) represents the extended double precision TTA,
with the new cutoff check and original direct formula imple-
mented. Both CRAM and QRAM are suitable for irradiation cases,
while QRAM has less convergence efficiency, but more easily
obtains coefficients for the rational function approximation. Refer-
ence solutions for the first two cases are calculated by QRAM(F)
with order of 64, which is much more accurate than the other sol-
vers for solving burnup type problems. TTA could calculate decay
problems exactly without consideration of finite precision, and
the reference solution for the last case is provided by TTA(F00)
with cutoff of zero. Pseudo codes of the two analytic formulas
and CRAM are provided in Appendix A, since they are essential
for the efficiency consideration.

Numerical results for selected test cases are listed in Table 1–3,
and detailed error plots and error bounding curves could be found
in Fig. 3–5. Ct represents the number of linear chains, Lave and Lmax

denote the average and the maximum linear chain lengths. Ei and
Fref ;i are defined as the base 10 logarithms of absolute relative
error, and number density fraction of ith nuclide. For each test case,
the solver that has an accuracy well below nuclear data uncer-
tainty level and the least running time is chosen as the best solver.
Since the burnup type depletion problems were already discussed
thoroughly in a previous study (Isotalo and Aarnio, 2011), we shall
focus on the discussion of TTA performance and the numerical
behavior of introduced improvements rather than performance
differences among different methods.

For test case 1, the numerical results are shown in Table 1. The
three selected parameters, Ct ; Lave and Lmax of linear chains grow as
the cutoff value approaches zero. The identical results for TTA sol-
vers with cutoff being 10�15 indicate the absence of notable
numerical instability. Whereas for cutoff being 10�20, accuracy
damage is observed in double precision solvers with comparison
to their extended double precision counterparts, in fact choosing
smaller cutoff value is almost meaningless. Nevertheless, all
double precision TTA methods have similar accuracy, indicating
that the two proposed improvements do not cause numerical
deficiency.

Compared with case 1, case 2 as shown in Table 2 includes
fewer solvers for comparison. Because the same observations and
conclusions from case 1 apply as well. For TTA solvers, a slowing
down factor of about 4 together with slightly decreasing average
linear chain length is observed. The reason is that case 2 contains
much more nuclides initially, and the linear chains originating
from these latest emerged nuclides are considered, while their
smaller average length is due to relatively smaller number



Table 2
Performance of various solvers and selected parameters of linear chains in CASE 2.

Methods Time Characters of processed linear chains The maximum Ei value for i satisfying Fref ;i 2
Part 1 Part 2 (ms) Ct Lave Lmax [�5,0) [�10,�5) [�20,�10)
TTA [10�15] (D00) 200.2 65,261 7.8490 16 �7.7281 �3.6858 > 0

(D11) 30.67 65,261 7.8490 16 �7.7281 �3.6858 > 0
TTA [10�20] (D00) 2298 536,415 9.5488 20 �11.3405 �7.5419 �0.3362

(D11) 287.0 536,934 9.5554 22 �10.5850 �7.5419 �0.3362
TTA [10�30] (F00) 4.107E6 22,806,207 12.8436 26 �14.5929 �9.9934 �8.8761

(F11) 4.971E5 22,806,207 12.8436 26 �14.5929 �9.9934 �8.8761
CRAM (D) 4.945 N/A �11.6036 �9.5802 �7.0412
[14]
QRAM (F) 2356 N/A Reference solution
[64]

Table 3
Performance of various solvers and selected parameters of linear chains in CASE 3.

Methods Time Characters of processed linear chains The maximum Ei value for i satisfying Fref ;i 2
Part 1 Part 2 (ms) Ct Lave Lmax [�10,0) [�20,�10) [�30,�20)
TTA [0.0] (D00) 8.443 4558 7.1531 23 �9.8193 �10.5809 �13.7935

(D11) 1.448 4558 7.1531 23 �10.3268 �11.1502 �14.3434
CRAM (D) 2.109 N/A �9.3630 > 0 > 0
[14]
QRAM (F) 405.3 N/A �11.1502 �5.6023 �1.4819
[64]
TTA [10�30] (F11) 183.6 4558 7.1531 23 < �15 < �15 < �15

(F00) 39.41 4558 7.1531 23 Reference solution
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densities of such root nuclides. Nevertheless, in view of the huge
performance gap between TTA and CRAM methods for solving bur-
nup problems, the introduced improvements for TTA method are
not very important.

Numerical results of case 3 are listed in Table 3, and the detailed
error plot is presented in Fig. 5. There is no closed cycle in the
decay system, and all linear chains are terminated by stable
nuclides and have well bounded lengths. With the help of the
introduced improvements, the TTA(D11) solver outperformed
other solvers in terms of accuracy and efficiency.
4. Conclusion

In this paper, two improvements are proposed to the TTA
method. The first one utilizes the time-averaged number densities
to simplify the cutoff check. The second one replaces the legacy
direct formula with a new recursive formula for finding the ana-
lytic solution for the linear chains. Numerical tests based on typical
PWR depletion calculations show that, these two improvements
offer speedup factors of about 2 and 4 respectively, while the accu-
racy of TTA method is preserved. As a consequence, TTA method is
recommended for solving decay problems. It should also be noticed
that the newly proposed recursive formula only involves one sub-
chain solution, and is more concisely implemented.
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Appendix A

The important variables appeared in the following description
of algorithms are listed below:

� n: The number of nuclides;
� A: The n� n depletion matrix;
� t: Depletion time;
� DEN: The initial number density vector;
� DENP: The solution number density vector;
� max len : The maximum length of linear chain;
� chain len : The length of linear chain;
� node orderðmax lenÞ : The ith element keeps the number of
nodes in the first (i � 1) nodes, which have the same vanishing
coefficients with the ith node;
� node preðmax lenÞ : The i’th element keeps the level number of
the node, which has the same vanishing coefficient with, resides
in the upstream of and most close to the ith node. If such node
does not exist, it is assigned with �1;
� lambdaðmax lenÞ : The vanishing coefficients of nodes;
� lambda nextðmax lenÞ : The ith element represents the transfer
coefficient from the ith node nuclide to (i + 1)th node nuclide;
� pðmax lenÞ : pðiÞ ¼ iði� 1Þ=2;
� rðpðmax lenÞ þmax lenÞ : rðpðiÞ þ 1 : pðiÞ þ iÞ stores the solution
coefficients for the ith node.

The solution to the ith node is expressed as:

NiðtÞ ¼
Xi

j¼1
rðpðiÞ þ jÞtnode orderðjÞ expð�lambdaðjÞ � tÞ ð35Þ

The pseudo code of originally implemented TTA is briefly presented
below:



Algorithm 1

1: for m ¼ 1 to n do # Loop over nuclides with positive initial densities
2: if DENðmÞ 6 0:0; continue
3: Initialize a linear chain with m’th nuclide being the root node
chain len 1 # Length of the chain
restart pos 1 # The position of restart node
grow flag  0 # The node will be added is pesudo/actual (0/1)
rð1Þ  DENðmÞ # Apply Eq. (10)
. . .. . .

4: Tally contribution of the root node
5: while True do # Loop for enumerating all important chains
6: while True do # Loop for chain growing from restart node
7: if The last node does not have successors; exit
8: if grow flag ¼ 1 and Cutoff check fails; exit
9: if chain len P max len; exit
10: if grow flag ¼ 1 then
11: Append an unexplored successor of the last node
12: else
13: Append a pseudo node
14: end if
15: i chain lenþ 1
16: DIRECT_SOLVE(i) # Use direct formula to solve the i’th node
17: if grow flag ¼ 1; chain len chain lenþ 1
18: grow flag  1� grow flag
19: end while
20: Tally contributions of the ðrestart posþ 1Þ’th node to the last node
21: chain len chain len� 1
22: while chain len > 0 do # Loop for identifying restart node
23: if All successors of the last node have been explored then
24: chain len chain len� 1; continue
25: else
26: exit
27: end if
28: end while
29: if chain len ¼ 0; exit # The restart node can not be found
30: restart pos chain len
31: grow flag  1
32: end while
33: end for

Algorithm 2

1: procedure DIRECT_SOLVE (i)
2: Calculate N1ð0ÞKi�1
3: for j ¼ 1 to ai do
4: Calculate âi;j

5: if bi;j ¼ 0 then
6: ci;j;0  N1ð0ÞKi�1âi;j; continue
7: end if
8: for p ¼ 1 to ai do
9: if p ¼ j; continue
10: for k ¼ 0 to bi;j do

11: X̂p
i;j;k  

Pk
q¼0 X̂

p�1
i;j;k�q

qþ bi;p
bi;p

� �
1ek j�ekp

� �q

12: end for
13: end for
14: for k ¼ 0 to bi;j do

15: ci;j;k  N1ð0Þ
k! Ki�1âi;jX̂i;j;bi;j�k

16: end for
17: end for
18: end procedure
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The improvement on cutoff check is achieved by removing the
pseudo node calculations and adding an array to keep track the
average number densities of the nodes.

The pseudo code of the direct solution procedure in Algorithm 1

is provided below. The term X̂p
i;j;k is defined as:
Hp
i;j;k ¼ hjh 2 Hi;j;k and

Xai
q¼pþ1

hq ¼ 0

( )
X̂p

i;j;k ¼
X

h2Hp
i;j;k

Pi;j;kðhÞ
ð36Þ

The pseudo code of the recursive formula is presented below, it
is supposed to replace the direct solution procedure in Algorithm 1.
node mark is one dimensional integer array with length being
max len.

The complex linear systems in CRAM are solved by Gauss–Sei-
del method with a simple preconditioning technique. a� and h�
are coefficients of the rational approximation function in partial
fraction form. And setting cutoff value as 10�30 will obtain suffi-
cient accuracy. The pseudo code is presented below:



Algorithm 3

1: k lambdaðchain lenþ 1Þ
2: node mark 0
3: tmp1 0:0
4: for j ¼ chain len to 1 step �1 do
5: if node markðjÞ – 0; continue
6: if j ¼ node preðchain lenþ 1Þ then
7: pos j
8: for k ¼ 1 to node orderðjÞ þ 1 do
9: node markðposÞ  1
10: pos node preðposÞ
11: end for
12: continue
13: end if

# Apply Eq. (16)
14: tmp2 lambda nextðchain lenÞ � rðpðchain lenÞ þ jÞ=ðk� lambdaðjÞÞ
15: rðpðchain lenþ 1Þ þ jÞ  tmp2
16: pos j
17: for k ¼ node orderðjÞ to 1 step �1 do
18: pos node preðposÞ
19: tmp2 ðlambda nextðchain lenÞ � rðpðchain lenÞ þ posÞ � k � tmp2Þ=ðk� lambdaðjÞÞ
20: rðpðchain lenþ 1Þ þ posÞ  tmp2
21: node markðposÞ  1
22: end for
23: tmp1 tmp1þ tmp2
24: end for
25: if node orderðchain lenþ 1Þ ¼ 0 then

# Apply Eq. (18)
26: rðpðchain lenþ 1Þ þ chain lenþ 1Þ  �tmp1
27: else
# Apply Eq. (17)

28: pos chain lenþ 1
29: for j ¼ node orderðchain lenþ 1Þ to 1 step �1 do
30: pos2 node preðposÞ
31: rðpðchain lenþ 1Þ þ posÞ  lambda nextðchain lenÞ � rðpðchain lenÞ þ pos2Þ=j
32: pos pos2
33: end for
34: rðpðchain lenþ 1Þ þ posÞ  �tmp1
35: end if

Algorithm 4

1: D diagðtAÞ
2: e cutoff �Pn

i¼1jDENðiÞj # Convergence criteria
3: DENP  0:0
4: for i ¼ 1 to order=2 do # Solve order=2 linear systems

5: AI ðtA� hi � IÞðD� hi � IÞ�1 # Preconditioning

6: DENI AI�1 � DEN # Solve linear system by Gauss–Seidel method

7: DENI ai � ðD� hi � IÞ�1 � DENI
8: DENP  DENP þ ReðDENIÞ
9: end for
10: DENP  2 DENP þ a0 � DEN
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Appendix B

The lower triangular Bateman equations is presented below:
dN1ðtÞ
dt

¼ �k1N1ðtÞ
dNiþ1ðtÞ

dt
¼
Xi

p¼1
kiþ1;pNpðtÞ � kiþ1Niþ1ðtÞ ði P 1Þ

ð37Þ
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The solution form and the solution to first node is the same as
bi-diagonal case, and could be found in Eqs. (9) and (10). The
inductive part of the recursive formula is as follows:

At first, for all j that ekj – kiþ1,

biþ1;j ¼ bi;j

ciþ1;j;biþ1;j ¼
Pi

p¼qðj;bi;jÞkiþ1;pcp;j;bi;j
kiþ1 � ekj

ciþ1;j;k ¼
Pi

p¼qðj;kÞkiþ1;pcp;j;k � ðkþ 1Þciþ1;j;kþ1
kiþ1 � ekj

0 6 k < bi;j

ð38Þ

Secondly, if �kiþ1 coincides with vanishing coefficients intro-

duced by the first i nuclides, that is 9̂j 2 f1;2; . . . ; aig; ek ĵ ¼ kiþ1,
then:

aiþ1 ¼ ai biþ1;̂j ¼ bi;̂j þ 1

ciþ1;̂j;k ¼
Pi

p¼qð̂j;k�1Þkiþ1;pcp;̂j;k�1
k

1 6 k 6 bi;̂j þ 1

ciþ1;̂j;0 ¼ Niþ1ð0Þ �
Xaiþ1
j¼0
j–ĵ

ciþ1;j;0

ð39Þ

Otherwise �kiþ1 is a new vanishing coefficient, which means

8̂j 2 f1;2; . . . ; aig; kĵ – kiþ1, then:

aiþ1 ¼ ai þ 1 biþ1;aiþ1 ¼ 0

ekaiþ1 ¼ kiþ1 ciþ1;aiþ1 ;0 ¼ Niþ1ð0Þ �
Xai
j¼1

ciþ1;j;0
ð40Þ

The notation qðint1; int2Þ is defined as:

qðint1; int2Þ ¼ minfq 2 Nþ : aq P int1; bq;int1 P int2g ð41Þ
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