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Two heterogeneous nodal methods based on the Variational Nodal Method (VNM) are investigated with
diffusion approximation in three-dimensional Cartesian geometry. The first one is named as Function
Expansion (FE) method while the second is Finite Sub-element (FS) method. Based on our previous work
and the code Violet-Het1D in one-dimensional slab geometry, a code named Violet-Het3D was devel-
oped to handle the Pressurized Water Reactor (PWR) control rod cusping effect and pin-by-pin calcu-
lation by using either of these two methods. To eliminate the control rod cusping effect, Violet-Het3D
provides a different idea from the existing methods. Neither homogenization procedure nor mesh
adjustment is needed in Violet-Het3D by taking advantage of the treatment for heterogeneous nodes.
Numerical results show that both the FE and FS methods can eliminate the cusping effect and obtain
accurate power distribution while the FE method has relatively higher efficiency and accuracy. In
contrast, for pin-by-pin calculation, the FS method obtains more accurate eigenvalue and pin power
distribution than the FE method.

© 2017 Published by Elsevier Ltd.
1. Introduction

In recent decades, the two-step scheme (Smith, 1986) is
employed in Pressurized Water Reactor (PWR) core computation:
lattice calculation with homogenization and whole-core diffusion
calculation with pin-power reconstruction. For the core diffusion
calculation, nodal methods have been widely employed. In nodal
methods, there is one basic assumption that the cross sections
within each node are homogeneous. Although the assumption is
reasonable in most situations in PWR as the detailed construction
within each assembly is homogenized by using the lattice code, it
will introduce errors or limit the computational efficiency in some
special cases. Two typical examples including the “control rod
cusping effect” and pin-by-pin calculation are discussed in this
paper.

Firstly, control rods keep moving along the axial direction
within the PWR core with a step size of about 1e2 cm, while the
nodal size of neutronics simulation is usually about 10e20 cm.
Thus, unavoidably a control rod assembly may be partially inserted
et al., Comparison of two th
lculation, Progress in Nuclea
into a node which means part of the node uses assembly-
homogenized cross sections with control rods in while the other
part uses assembly-homogenized cross sections with control rods
out. As the piece-wise distributed cross sections within a node is
not allowed by traditional nodal methods, the heterogeneous node
should be homogenized. However, if we simply homogenize the
node by using the volume-weighted scheme, it would result a lot of
wiggles in the numerically simulated curve of control rod differ-
ential worth which theoretically should be smooth. This phenom-
enon is the so-called control rod cusping effect (Si, 2006). Since
1980s (Han-Sem, 1984), many methods have been investigated to
eliminate it. These methods can be classified into two categories
although they have different implementations. The first category is
flux-volume-weighted methods (Yamamoto, 2004; Dall'Osso,
2002; Bandini et al., 2003; Downar et al., 2004; Reitsma and
Muller, 2002). They have to obtain an approximate flux distribu-
tion over the heterogeneous nodes for homogenization. The second
category is adaptive mesh methods (Zhang, 2014). They adjust the
spatial mesh after each control rod movement to avoid the
ree-dimensional heterogeneous Variational Nodal Methods for PWR
r Energy (2017), http://dx.doi.org/10.1016/j.pnucene.2017.06.002
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appearance of heterogeneous nodes.
Secondly, to reduce the error introduced by assembly homoge-

nization, the pin-by-pin scheme has arisen. It solves thewhole-core
problem with pin cell homogenized cross sections to eliminate the
assembly homogenization and pin-power reconstruction. There-
fore, many pin-by-pin calculation codes have been developed such
as SCOPE2 (Tatsumi andYamamoto, 2003) andEFEN (Li et al., 2014a).
However, as traditional nodal method requires homogenized cross
sections in each mesh, the whole-core pin-by-pin problem should
consist of millions of meshes, causing issues in both memory and
efficiency. For example, a PWR can be divided into 10 million pin-
size meshes. Together with the SP3 approximation and 4 energy
groups, it needs 10 GBmemory and the computational time is about
24 h (Yang et al., 2014) for one single CPU.

For the control rod cusping effect problem, if nodal method al-
lows heterogeneity in a node, neither the flux-volume-weighted
method nor the mesh adjustment would be needed to avoid the
heterogeneous nodes. The control rod cusping effect is supposed to
be directly eliminated by using heterogeneous nodal method. For
the pin-by-pin problem, a whole assembly can be treated as a node
if heterogeneity is allowed in a node.

Thus, to eliminate the requirement of nodal homogeneous cross
sections in traditional nodal methods, heterogeneous nodal
methods were developed. In 1997, Fanning and Palmiotti (1997)
developed a heterogeneous Variational Nodal Method (VNM
(Palmiotti et al., 1995; Li et al., 2015a)). The space variable of flux
and current in this method are still expanded by polynomials as
same as that in homogeneous VNM. For calculating the response
matrices, the heterogeneous node is divided into several homoge-
neous regions and then the integrals over the node are divided into
a set of homogeneous integrals. In 2003, Smith et al. (2003)
developed another heterogeneous VNM. The main idea of this
method is to further break each heterogeneous node into sub-
elements within which the cross sections are constants. The flux
is then expanded by finite trial functions in space. The nodal
functional is constructed by the functional of all sub-elements in
the node.

To investigate and make comparisons of the above two
methods, this paper derives the formulations based on the two
methods with diffusion approximation in three-dimensional Car-
tesian geometry. In this paper, we call them the function expansion
(FE) method (Li et al., 2014b) and finite sub-element (FS) (Li et al.,
2015b) method respectively. However, different from Fanning's
method, the cross sections in FE method are presented by piece-
wise polynomials which means it can treat not only the problems
with heterogeneous nodes consisted of several homogeneous re-
gions as that in Fanning's paper, but also the problems with
continuous cross sections (Li et al., 2014b) within the nodes.
Different from Smith's method, the nodal interface current in FS
method is expanded by finite trial functions instead of polynomials
which should eliminate the interface approximation caused by the
transformation of coefficients between finite trial functions and
polynomials. Moreover, this paper applies these two methods to
eliminating the control rod cusping effect in PWR which is not
found in previous works. This might be the first practical applica-
tion of heterogeneous nodal methods.

A commercial program called Freefemþþ (Bernardi et al., ) is
employed to generate the sub-elements inside the nodes. A code
named Violet-Het3D was developed to treat heterogeneous node
by the two methods. In addition, a representative PWR control rod
cusping effect problem and a pin-by-pin problemwere employed in
this paper to make the comparisons for these two methods.
Please cite this article in press as: Wang, Y., et al., Comparison of two th
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2. Theory

Both of the FE and FS methods start from the three-dimensional
within-group diffusion equation:

8<
:

V$JðrÞ þ StðrÞFðrÞ ¼ SsðrÞFðrÞ þ SðrÞ
1
3
VFðrÞ þ StðrÞJðrÞ ¼ 0

(1)

where F is the scalar flux (cm�2$s�1), J is net current (cm�2$s�1), St

is the total cross section (cm�1), Ss is the within-group scattering
cross section (cm�1), and S is the source term (cm�3$s�1) including
scattering and fission:

SðrÞ ¼
X

ðrÞFðrÞ þ 1
k
QðrÞFðrÞ (2)

whereX
ðrÞFðrÞ ¼

X
g0sg

Ss
gg0 ðrÞFg0 ðrÞ (3)

and

1
k
QðrÞFðrÞ ¼

X
g0

cg
k
nSf ;g0 ðrÞFg0 ðrÞ (4)

k is the effective multiplication factor, cgnSf ;g0 and Ss
gg0 are

respectively the fission and scattering cross sections (cm�1) from
energy group g’ to g.

The same as the homogeneous VNM, the entire problem domain
is decomposed into subdomains Vv (nodes) and the functional can
be written as a superposition of nodal contributions:

F½F; J� ¼
X
v

Fv½F; J� (5)

F½F; J� stands for the functional of the whole problem in terms of F
and J while Fv½F; J� is the nodal functional. Start from here, the FE
and FS methods treat the nodal heterogeneity differently.
2.1. Function expansion method

The nodal functional consists of volume and surface
contributions:

Fv½F; J� ¼
Z

v
dV
�
1
3
StðrÞ�1ðVFðrÞÞ2 þ ðStðrÞ � SsðrÞÞFðrÞ2

� 2FðrÞSðrÞ
�
þ 2

X
g

Z
g
FgJgdG (6)

Jg ¼ Jg$ng (7)

where v stands for a certain node of the entire problem; g rep-
resents a certain nodal surface of node v; Jg stands for the net
current (cm�2$s�1) on the surfaces of the node and ng is the
outer normal of the nodal surface. In this method, the cross
sections in the nodal functional as shown in Eq. (6) can be
written as piecewise polynomials instead of constants. Thus, it
can treat both the problems of heterogeneous nodes with
piecewise homogeneous regions and the problems with contin-
uous cross sections.
ree-dimensional heterogeneous Variational Nodal Methods for PWR
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Then the scalar flux, the within-group source within the nodes
and net current along the nodal surfaces are expanded as:

8>>>><
>>>>:

FðrÞ ¼P
i
4ifiðrÞ

SðrÞ ¼P
i
sifiðrÞ

JgðrÞ ¼
X
j

cjghjðrÞ
(8)

where f ðrÞ and hðrÞ are the known orthogonal polynomials defined
in the volume and on the surfaces respectively; 4i, si and cjg are the
corresponding unknown coefficients or expansion moments.
Substituting Eq. (8) into Eq. (2), we can obtain the relationship
between flux and source moments:

si ¼
Z

v

(�
SðrÞ þ 1

k
QðrÞ

�
$

 X
i

4ifiðrÞ
!
$fiðrÞ

)
(9)

Inserting Eq. (8) into Eq. (6) yields the reduced functional for
each node:

Fv½4;c� ¼ 4TA4� 24Tsþ 24TMc (10)

M ¼ �M1;M2;…;Mg;…
�

(11)

cT ¼
h
cT
1;c

T
2;…;cT

g;…
i

(12)

where

Aii0 ¼
Z

v

�
DðrÞ$VfiðrÞ$Vfi0 ðrÞ þ ðStðrÞ � SsðrÞÞfiðrÞ$fi0 ðrÞ

	
dV

(13)

DðrÞ ¼ 1
3
StðrÞ�1 (14)

Mijg ¼
Z

g
fiðrÞhjðrÞdG (15)

4, s and c are the unknown vectors consisted of 4i, si and cjg.
Different from the homogeneous VNM, the cross sections in Eqs.

(9) and (13) cannot be taken out of the integration. Once the nodal
functional is obtained, the following derivation is the same as that
in homogeneous VNM. This method directly describes the cross
section as a function of space through the derivation and finally
considers the nodal heterogeneity into the integrals of response
matrix A.
2.2. Finite sub-element method

In this method, each node is further divided into a set of ho-
mogeneous sub-regions named sub-elements (Smith et al., 2003).
The nodal functional is then written as a superposition of sub-
element functional:

Fv½F; J� ¼
X
e

Fe½Fe; J� (16)

where e stands for a certain element in the nodal domain. Then the
element functional is written as:
Please cite this article in press as: Wang, Y., et al., Comparison of two th
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Fe½Fe; J� ¼
Z
e

dV
n
DeðVFeÞ2 þ



St;e � Ss;e

�
F2
e � 2FeSe

o
þ 2

X
g

�
Z

g
Fe;gJe;gdG

(17)

The surface term in Eq. (17) only appears in those sub-elements
adjacent to nodal interfaces because continuous trial functions are
used within each node.

We expand the flux and source within the sub-element and net
current along the sub-element's surfaces as:

8>>>>>>>><
>>>>>>>>:

FeðrÞ ¼
XM
m¼1

4e;mfe;mðrÞ

SeðrÞ ¼
XM
m¼1

se;mfe;mðrÞ

Je;gðrÞ ¼
XN
n¼1

je;g;nhe;g;nðrÞ

; r2e (18)

Different from polynomial expansions in FE method, f ðrÞ and
hðrÞ are the linear finite element trial functions (Zienkiewicz et al.,
2008) defined in the volume and on the surfaces. 4, s and j are the
unknown coefficients. M and N respectively represent the number
of vertices within the sub-element and on its surface. For the cross
sections in each element are homogeneous, the relationship be-
tween flux and source moments is written as:

se;m ¼
�
Se þ 1

k
vSf ;e

�
4e;m (19)

Substituting Eq. (18) into the element functional in Eq. (17)
yields the reduced functional:

Fe½4; j� ¼ 4T
eAe4e � 24T

eFese þ 24T
eMeje (20)

where

Ae;mm0 ¼
Z

e

n
De$Vf ðrÞe;m$Vfe;m0 ðrÞ þ 
St;e

� Ss;e
�
fe;mðrÞfe;m0 ðrÞ

o
dV (21)

Fe;mm0 ¼
Z

e
fe;mðrÞfe;m0 ðrÞdV (22)

Me;mn0 ¼
Z

g
fe;mðrÞhe;g;n0 ðrÞdG (23)

To obtain the nodal functional, we should use the Boolean
transformation matrix (Reddy, 1993) Xe to map the element trial
function coefficients to the nodal expansion coefficients:

4e ¼ Xe4 (24)

Substituting Eq. (24) into Eq. (20), and then substituting Eq. (20)
into Eq. (16) leads to the nodal functional:

Fv½4; j� ¼ 4TA4� 24Tsþ 24TMj (25)

where
ree-dimensional heterogeneous Variational Nodal Methods for PWR
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Fig. 2. Axial size of the reactor core.
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A ¼
X
e

XT
eAeXe (26)

s ¼
X
e

XT
eFese (27)

M ¼
h
XT
1M1 XT

2M2 / XT
eMe /

i
(28)

jT ¼
h
jT1 jT2 / jTe /

i
(29)

Then we can obtain the nodal response equations by the same
procedure in homogeneous VNM.

3. Results

A typical PWR control rod cusping effect problem and a pin-by-
pin problem were calculated to test the ability of the code Violet-
Het3D for treating heterogeneous nodes. All the following com-
parisons take homogeneous fine mesh calculation as the reference
because it can directly measure the error introduced by the treat-
ments of heterogeneity in FE and FS method. Therefore, another
code Violet-Hom3D (Li et al., 2015a), based on homogeneous VNM,
is developed.

3.1. Control rod cusping effect

The configuration of the 1/4 core is shown in Figs. 1 and 2. “CR”
represents the assemblies with control rods and the radial size of all
the assemblies is 20 � 20 cm. The two-group macroscopic cross
sections of assemblies and reflector are listed in Table 1.
Fig. 1. Radial configuration of the 1/4 reactor core.

Please cite this article in press as: Wang, Y., et al., Comparison of two th
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In this problem, the control rods were inserted from the top to
the bottom of the core by 1 cm for each step. Fig. 2 shows that there
are totally 272 steps. Then the differential worth of the control rods
can be calculated by the eigenvalues obtained by the whole-core
diffusion calculation for each step. For example, the control rods
differential worth of step i (from top to bottom) can be calculated
by:

Diffi ¼
�
ki � 1
ki

� ki�1 � 1
ki�1

�
*105 pcm=cm; i ¼ 1;…;272 (30)

where ki and ki-1 are the eigenvalues obtained by the whole-core
diffusion calculations for step i and i-1 respectively of the control
rods.

To obtain the reference control rod differential worth, we divide
each assembly into 4 nodes in radial and take 1 cm for the axial size.
So the size of each node is 10 � 10 � 1 cm. Heterogeneous nodes
will not exist in this situation as fine nodal mesh is adopted in the
axial direction. Violet-Hom3D is employed for the reference
calculation.

Actually, in the core-analysis calculation, nodal size is usually
about 10e20 cm in axial direction. In this problem, as indicated by
Fig. 2, the axial size of the nodes should be 26 cm in the reflector
region and 20 cm in the core except a layer of 10 cm at the bottom of
the core. In this situation, heterogeneous nodes will appear with
the movement of the control rod as is shown in Fig. 3. To obtain the
homogenous cross sections of the heterogeneous nodes, the easiest
method is volume-weighted scheme. However, this scheme causes
severe control rod cusping effect as is shown in Fig. 4. A more
commonly used method is flux-volume-weighted scheme. Then
the homogeneous cross sections of the heterogeneous nodes are
obtained by:
ree-dimensional heterogeneous Variational Nodal Methods for PWR
r Energy (2017), http://dx.doi.org/10.1016/j.pnucene.2017.06.002



Table 1
Two-group macroscopic cross sections of different materials.

Material Energy group Dg=cm Sa;g=cm�1 vSf ;g=cm�1 Ss;1�2=cm�1

Fuel assembly
(3.0% enrichment)

1 1.4191287 0.0087124 0.0061720 0.0167086
2 0.3743527 0.0799658 0.1203360

Fuel assembly
(2.672% enrichment)

1 1.4166403 0.0085210 0.0057686 0.0169843
2 0.3744220 0.0751517 0.1103079

Fuel assembly
(2.4% enrichment)

1 1.4143051 0.0083632 0.0054297 0.0172346
2 0.3744912 0.0703376 0.0997627

CR 1 1.4317809 0.0120676 0.0053785 0.0147629
2 0.3793716 0.0940192 0.1026720

Reflector
at the top

1 1.5552857 0.0076996 0.0 0.0210846
2 0.3616395 0.1385250 0.0

Reflector
at the bottom

1 1.2762708 0.0016599 0.0 0.0326260
2 0.2824586 0.0397660 0.0

Reflector
around

1 1.1322748 0.0027034 0.0 0.0210846
2 0.2489262 0.0193220 0.0

c1 ¼ 1:0;c ¼ 0:0

Fig. 3. Heterogeneous node caused by control rod.

Fig. 4. Differential worth of control ro
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SHom ¼

Z
HetNode

SHetðzÞ4ðzÞdz
Z

4ðzÞdz
(31)

To obtain the axial flux distribution for homogenization in Eq.
(31), it has to iterate between the one-dimensional calculation of
the assembly with control rod in the axial direction and the three-
dimensional calculation of the core. The 3D dimensional calculation
aims to provide radial leakage for the 1D calculation. Then the 1D
calculation obtains the axial flux distribution and homogenizes the
cross sections for the 3D calculation. The iteration should do at least
once to obtain acceptable accuracy. The result of this scheme is also
shown in Fig. 4. We can find that the cusping effect is greatly
reduced but still exist. All the above calculations are done by Violet-
Hom3D. Additionally, if we use axial discontinuity factor in the
flux-volume-weighted scheme, the accuracy will be further
d calculated by different scheme.

ree-dimensional heterogeneous Variational Nodal Methods for PWR
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improved. However, to make consistent and fair comparisons, this
paper didn't use any axial discontinuity factors in all the
calculations.

Violet-Het3D adopts the same coarse mesh mentioned above,
for heterogeneity is allowed in this method, homogenization is not
needed for the nodes with control rod partially inserted. In FE
method, the distributions of cross sections in the heterogeneous
nodes are described as piecewise functions of space in Violet-
Het3D:

Sx;gðrÞ ¼
�
S1; z2½z0; z1�
S2; z2ðz1; z2� (32)

z0 and z2 represent the axial positions of the bottom and top of the
heterogeneous node; z1 is the cross section discontinuity position;
S1 and S2 are the two different values of one kind of cross section
within the heterogeneous node. In the FE method, the flux is
expanded by 5th order polynomials in the axial direction. In
contrast, the heterogeneous nodes are explicitly described by tet-
rahedrons in FS method. Each node is divided into 10 layers with 24
tetrahedrons for each layer. The numerical results of these two
methods are also shown in Fig. 4. Obviously, Violet-Het3D obtains
better results than flux-volume-weighted schemes. Both FE and FS
methods can eliminate the cusping effect and provide a smooth
differential worth curve which agrees well with the reference.
While there is still some difference between the reference and the
curve obtained by FS method especially at the top of the curve, it is
due to the linear expansion approximation of the flux and source in
the sub-element as indicated by Eq. (18). Increasing the number of
sub-element in the nodes will improve the results.

This paper has also made the comparisons of power distribu-
tions when the control rods are at the 150th step in the core so that
heterogeneous nodes appear in the middle of the core. Fig. 5 shows
the relative percent error of the axial power distribution of the CR
assembly obtained by different schemes. The relative percent error
is defined by:
Fig. 5. Error of axial power distr

Please cite this article in press as: Wang, Y., et al., Comparison of two th
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error ¼ result � reference
reference

*100% (33)

We can find that the errors of volume-weighted scheme and
volume-flux-weighted scheme locate in intervals �4%~2% and �2%
~4% respectively. In addition, the maximum error exits around the
heterogeneous node because homogenization procedure is applied
in the two weighted schemes. In contrast, FE method and FS
method achieve much better results with the maximum error less
than 0.2% and 0.5% respectively.

Fig. 6 shows the relative percent error of the radial power dis-
tribution of the layer where heterogeneous node exits when
volume-weighted scheme is applied. We can find the maximum
error �3.5~ �4.3% occurs at the CR assembly. The large error of the
CR assembly also affects the adjacent nodes with the maximum
error of about �1.5%. The Root-Mean-Square (RMS) error of the
distribution is 1.21%. The overall error decreases when we apply
volume-flux-weighted scheme to this problem. The maximum er-
ror is 1.5% and it still exits at the CR assembly; the RMS error of the
distribution is 0.42%. Although volume-flux-weighted scheme
provides obvious improvement for the radial power distribution
but the error is still too large. Fig. 7 shows the percent error of radial
power distribution when FE method is employed in Violet-Het3D.
The maximum error at the CR assembly is �0.02% and the errors
of all other nodes are less than 0.01%. In addition, the RMS error is
0.01%. Obviously, the FE method has obtained much more accurate
radial power distribution than the twoweighted schemes.When FS
method is adopted, the maximum error at the CR assembly
becomes �0.05% and the errors of all other nodes are less than
0.03%. The RMS error is 0.02%. Comparatively, the FE method has
relatively better accuracy than FS method in this problem.

Table 2 shows the computational time of different schemes. The
reference calculation costs much more time than the others. The
volume-weighted scheme costs the least time but suffers from
severe cusping effect. As the flux-volume-weighted scheme has to
do the iteration between 3D and 1D calculation at least once, the
ibution of the CR assembly.

ree-dimensional heterogeneous Variational Nodal Methods for PWR
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Fig. 6. Percent error of radial power distribution obtained by volume-weighted scheme.

Fig. 7. Percent error of radial power distribution obtained by FE method in Violet-Het3D.
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Table 2
Computational time of different schemes.

Schemes Reference Volume-weighted Flux-volume-weighted Violet-Het3D(FE) Violet-Het3D(FS)

Time/min >1000 141.5 331.7 155.3 196.0

Y. Wang et al. / Progress in Nuclear Energy xxx (2017) 1e118
computational time is more than twice as much as that of volume-
weighted scheme. As indicated in Table 2, Violet-Het3D costs much
less time than the flux-volume-weighted scheme. It is because no
3D-1D iteration for the homogenized cross sections is performed in
Violet-Het3D. In addition, FE method shows higher efficiency in
this problem than FS method. FE method costs 10% more time than
the volume-weighted scheme while 40% for FS method. This is
because 99 vertices and 240 tetrahedrons are defined within each
node in Violet-Het3D to describe the movement of control rods
which makes the response matrices get larger than those in FE
method. Larger response matrices slow down the power iteration
of Violet-Het3D.
3.2. Pin-by-pin problem

The radial core configuration of the problem is shown in Fig. 8.
The size of each assembly is 21.46 � 21.46 cm. Each fuel assembly
has traditional 17 � 17 pin configuration. Table 3 shows the two-
group homogenized cross sections of different pin cells. Ideally
the neutron-transport equation or at least the SP3 equation should
be solved in this problem. However, in order to evaluate Violet-
Het3D's ability of treating spatial heterogeneity, the neutron-
diffusion equation was solved for demonstration purpose.

The reference calculation treats each individual pin as a node
Fig. 8. Radial core and ass

Please cite this article in press as: Wang, Y., et al., Comparison of two th
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(including reflector assembly) making 2601 nodes in total. The
same as before, Violet-Hom3D is employed in the reference
calculation. In contrast, Violet-Het3D treats the entire assembly as a
single node with heterogeneous structure inside. The number of
nodes is only 9 for Violet-Het3D. As shown in Fig. 9, each assembly
is divided into tetrahedrons by the commercial program called
Freefemþþ when FS method is adopted. And it can be found in
Fig. 9 that each pin consists of 6 tetrahedrons which is enough to
describe explicitly the heterogeneous assembly. Further increasing
the number of tetrahedrons in the pin cell gains little improvement
as the pin cell is homogenized.

The results of keff are shown in Table 4. As we can see, FS method
achieves very accurate eigenvalue. In FE method, the error of keff
decreases with the increase of expansion orders. However, little
improvement has been obtained by further increasing the expan-
sion order higher than 7 in the volume and 3 on the surface.

The comparison of power distribution is shown in Table 5. It can
be found that the FS method provides more accurate power dis-
tribution than FE method. In FS method, the RMS error is 0.35%
which is smaller than that in FE method. Moreover, 88% of the pin
power errors are smaller than 0.5% and only 1.7% of them are larger
than 1%. Additionally, an error of 0.08% for the maximum pin power
is one order of magnitude smaller than that in FE method.
Comparatively, in FE method, the results improve with the increase
embly configuration.
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Table 3
Two-group macroscopic cross sections of the pin-by-pin problem.

Material Energy group Dg=cm Sa;g=cm�1 vSf ;g=cm�1 Ss;1�2=cm�1

Low Enrichment UO2 1 1.5445113 0.0087645 0.0048365 0.0163555
2 0.4836491 0.0472279 0.0706837

High Enrichment UO2 1 1.5532413 0.0094252 0.0056983 0.0173998
2 0.4555234 0.0619177 0.0998909

Guide Tube 1 1.9070722 0.0004357 0.0 0.0286373
2 0.3934771 0.0070638 0.0

Fission Chamber 1 1.9132458 0.0004154 0.0 0.0285656
2 0.3925138 0.0070833 0.0

Reflector 1 0.9055953 0.0029478 0.0 0.0268502
2 0.3135986 0.1000718 0.0

c1 ¼ 1:0;c0 ¼ 0:0

Fig. 9. Sub-elements configuration in each layer of the assembly.

Table 4
keff Comparison for the pin-by-pin problem when take each assembly as one node.

Reference Violet-Het3D (FE) Violet-Het3D(FS) Error/pcm

Expansion Results
Error/pcm

Volume Surface

1.10468 5 1 1.10527 59 1.10474 6
7 1 1.10519 51
7 3 1.10504 36
9 3 1.10503 35
11 5 1.10499 31

Table 5
Power Comparison of the pin-by-pin problem when take each assembly as one node.

Scheme Expansion Error of max. pin power/% M

Volume Surface

Violet-Het3D
(FE)

5 1 2.58 4.
7 1 0.80 2.
7 3 0.78 1.
9 3 0.74 2.
11 5 0.57 1.

Violet-Het3D
(FS)

/ 0.08 1.
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of expansion orders. However, the improvement is not obvious
when we further increase the expansion order higher than 7 in the
volume and 3 on the surface. The RMS error and the error of the
maximum pin power are 0.55% and 0.57 respectively when the
expansion order is as high as 11 in the volume and 5 on the surface.
In addition, there are still 7% of the pin power errors exceeding 1%
even with that high expansion order and most of them appear
around the guide tube and fission chamber. As the strong discon-
tinuity in cross sections (fuel, guide tube and fission chamber)
causing sharp flux gradient and complicated flux distribution
within the node, it's difficult for FE method to obtain accurate flux
distribution when the flux is expanded by continuous polynomials
over the entire assembly. Therefore, for FE method, most of the
large errors exist around guide tube and fission chamber where the
sharp flux gradient happens. By taking the advantage of element
trial functions' capability of describing complicated flux distribu-
tion, FS method obtains more accurate pin power distribution
within the assembly with the error less than 0.5%.

Table 6 shows the comparison of computational time. With the
increase of expansion orders in FE method, the time for computing
response matrices increases quickly while the time for iteration
remains almost the same. Compared to the reference solution, the
time for iteration in FE method decreases significantly because the
number of nodes is only 9. However, to treat the heterogeneity in
the node, more computational effort is needed by response matrix
calculation as is shown in Eq. (13). For the FE method, the
computational time for 9th order of volume expansion and 3rd
order of surface expansion is 15.7s which is about two times more
than that of the reference. FS method is supposed to be more effi-
cient than the reference because it also decreases the number of
nodes. However, as a result of the enormous number of vertices
that had to be defined to model the complicate geometry of the
assembly (648 vertices for each assembly in this problem), large
response matrices are obtained. This will greatly increase not only
the time of generating the response matrices, but also the time of
iteration.

Additionally, we further divide the whole assembly into 4 nodes
in Violet-Het3D calculations. So the assembly which contains
ax. error of pin power/% No. of pins with different errors RMS/%

>1.0% 0.5e1.0% <0.5%

63 268 326 462 1.10
20 203 361 492 0.81
54 98 409 549 0.60
16 87 482 487 0.62
80 78 356 622 0.55
49 18 110 928 0.35
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Table 6
Comparison of computational time of the pin-by-pin problem when take each assembly as one node.

Scheme Expansion Response matrices/s Iterations/s Total/s

Volume Surface

Violet-Het3D(FE) 5 1 0.8 0.0 0.8
7 1 3.8 0.0 3.8
7 3 3.9 0.1 4.0
9 3 15.6 0.1 15.7
11 5 54.5 0.1 54.6

Violet-Het3D(FS) / 5.5 4.0 9.5
Reference 3 2 0.1 5.6 5.7

Table 7
keff Comparison for the pin-by-pin problemwhen take each assembly as four nodes.

Reference Violet-Het3D (FE) Violet-Het3D(FS) Error/pcm

Expansion Results
Error/pcm

Volume Surface

1.10468 5 1 1.10548 80 1.10477 9
7 1 1.10539 71
7 3 1.10510 42
9 3 1.10508 40
11 5 1.10492 24
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17 � 17 pin cells is broke up into 4 nodes containing 8 � 8, 8 � 9,
9� 8 and 9� 9 pin cells respectively. Each pin cell also consists of 6
tetrahedronswhen FSmethod is employed. Tables 7 and 8 show the
comparisons of eigenvalue and pin power. However, we can find
the result of FE method doesn't become better than that shown in
Tables 4 and 5, it even gets worse especially when the low
expansion order is adopted on the surface. When the surface
expansion order increases to 5th, the results are only slightly better
than that of taking each assembly as a node. This is because when
we divide the whole assembly into 4 nodes, there will be not only
fuel pin cell, but also guide tube and fission chamber adjacent to
nodal interfaces which causes complicated current distribution
along the interface. The complex distribution should be difficult for
low order polynomials to describe. In contrast, when we treat the
whole assembly as one node, only fuel pin cells are adjacent to
nodal interfaces as shown in Fig. 8. Thus, although the reduction of
the number of pin cells in each node would improve the perfor-
mance of FE method within the node, the interface approximation
introduces in additional error in this case. Comparatively, the ac-
curacy of FS method remains the level because there are 8 basis
functions in each pin cell to represent the flux distribution and 4
basis functions on each pin cell surface which are capable of
describing the current.

Table 9 shows the computational time when we take each as-
sembly as 4 nodes. By comparing with Table 6, we can find the
computational time for response matrices doesn't change much. It is
because although fewer pin cells in each node reduces the
Table 8
Power Comparison of the pin-by-pin problem when take each assembly as four nodes.

Scheme Expansion Error of max. pin power/% M

Volume Surface

Violet-Het3D
(FE)

5 1 3.10 6.
7 1 1.60 3.
7 3 0.86 1.
9 3 0.79 2.
11 5 0.50 1.

Violet-Het3D
(FS)

/ 0.07 1.
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computational effort of generating response matrices for each node,
the number of “unique nodes” (have different geometry or material
configuration from any other nodes) increases in thewhole problem.
In the meanwhile, with the larger total number of nodes, the itera-
tion time increases but it has relative small value. As a result, the
total computational time is similar to that shown in Table 6.
4. Conclusions

This paper investigated two heterogeneous nodal method based
on VNM with diffusion approximation in three-dimension Carte-
sian geometry. Correspondingly, a code named Violet-Het3D was
developed. FE method directly considers the cross sections in each
node as functions of space through the derivation and expands the
flux over the entire node by continuous polynomials. In contrast, FS
method further divides the heterogeneous node into homogeneous
regions and expands the flux by linear trial functions. Two test
problems, a PWR control rod cusping effect problem and a pin-by-
pin problem, were calculated to test the treatments for heteroge-
neous node of the two methods.

To eliminate the control rod cusping effect, traditional methods
usually adopt rehomogenization schemes or adjust the nodal mesh
to avoid the appearance of heterogeneous nodes. In contrast,
Violet-Het3D provides a new scheme. It directly treats the het-
erogeneous nodes without rehomogenization or mesh adjustment.
Encouraging numerical results have been obtained. The volume-
weighted scheme suffers from most severe cusping effect. The
flux-volume-weighted scheme can reduce the cusping effect but
cannot eliminate it. Both FE and FS methods in Violet-Het3D can
obtain a very smooth differential worth curve which agrees well
with the reference. Moreover, they can also achieve accurate axial
and radial power distribution. In terms of efficiency, as FS method
has to divide the finite elements in the nodes, it causes considerable
increase in computational time compared with the volume-
weighted scheme. However, FE method only cost about 10% more
time than the volume-weight scheme while obtaining high accu-
racy. Thus, FE method is more recommended to be employed to
handle the cusping effect. Additionally, FE method can be easily
implemented in an existing VNM code.
ax. error of pin power/% No. of pins with different errors RMS/%

>1.0% 0.5e1.0% <0.5%

21 316 368 372 1.80
50 242 390 424 0.98
84 112 416 528 0.69
00 90 464 502 0.62
68 74 362 620 0.54
80 18 116 922 0.36
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Table 9
Comparison of computational time of the pin-by-pin problem when take each assembly as four nodes.

Scheme Expansion Response matrices/s Iterations/s Total/s

Volume Surface

Violet-Het3D(FE) 5 1 0.7 0.0 0.7
7 1 3.7 0.1 3.8
7 3 3.9 0.3 4.2
9 3 15.2 0.3 15.5
11 5 51.8 0.5 52.3

Violet-Het3D(FS) / 5.0 4.9 9.9
Reference 3 2 0.1 5.6 5.7
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Numerical results of the pin-by-pin problem show that FS
method obtains relatively better accuracy in eigenvalue and pin
power distribution than FE method. With FS method, the error of
eigenvalue is 6 pcm. The RMS error and the error of maximum pin
power are 0.35% and 0.08% respectively. Moreover, nearly 90% of
the pin power errors are less than 0.5%. With FE method, the RMS
error and the error of the maximum pin power are 0.55% and 0.57
respectively even the expansion order is as high as 11 in the volume
and 5 on the surface. In addition, as the complicated flux distri-
bution over the entire assembly is expanded by continuous poly-
nomials, 7% of the pin power errors exceed 1.0% which happens
around the regions with cross sections discontinuity (such as the
region close to guide tube and fission chamber). In this case, the
performance of FE method isn't improved even when each as-
sembly is divided into 4 nodes. As for computational time, since we
treat each assembly as a node (only 9 nodes), the time for iteration
decreases to a very small number in FE method. However, the time
for computing response matrices increases rapidly with the
expansion order. In FS method, the large number of vertices in the
assembly causes the low efficiency in both response matrices
generation and power iteration. Additionally, in practical cases, the
thermal-hydraulic feedback and burnup effects are different
everywhere in the core. Thus, every node is ‘unique’ and has its own
cross sections which means we have to calculate the response
matrices for each node. This would be very time consuming which
makes it difficult to be employed in practical applications at pre-
sent. Some acceleration schemes and improvements for this
method is under study.

Violet-Het3D will be further improved to solve the neutron-
transport equation in the future and it will be employed in more
applications to improve the computational behavior of nodal
methods by taking the advantage of directly treating heteroge-
neous nodes.
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