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The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of
problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile,
Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin prob-
lem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two
approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concen-
trate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron
transport equation. To provide demonstrative numerical results, the codes in this paper were developed
in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by
orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions.
The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method
by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the
combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate
the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homo-
geneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous
nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while
the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and
heterogeneous PWR core problem. For problems with only one or two discontinuity points such as the
PWR control rod cusping effect problem, both of the two methods can catch the effect with high
efficiency.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Modern nodal methods play an important role in reactor core
neutronics calculation due to its high computation efficiency and
accuracy (Wagner and Koebke, 1983). However, traditional nodal
methods usually require cross-section homogenization within
each node which unavoidably introduces errors or reduces the
computational efficiency in the following scenarios.

Firstly, in new reactor design such as Molten Salt Reactor (MSR),
the fluid fuel is continuously flowing. Continuous temperature and
nuclide density distributions result in continuous cross section dis-
tribution in space especially in axial direction. Volume- or approx-
imate flux-volume-weighted homogenization scheme within each
node is needed if traditional nodal methods are employed. How-
ever, if we adopt volume-weighted homogenization scheme for
the nodes, it will introduce obvious error to the flux distribution.
In addition, accurate flux distribution cannot be obtained even
the approximate flux-volume-weighted homogenization scheme
is employed. Some tests have been done in the ‘Results’ part of this
paper and we can find the most effective way for traditional nodal
methods to reduce the error caused by homogenization is adopting
fine nodal mesh, which will reduce the computational efficiency
unfortunately.

Secondly, in the Pressurized Water Reactor (PWR) core, control
rods keep moving along the axial direction with a step size of about
2 cm, while the nodal size of neutronics simulation is usually about
20 cm. It is common to have one or more control rods partially
inserted into the corresponding nodes. In this case, a single node
would consist of different materials with different macroscopic
cross sections within the framework of the traditional two-step
simulation method. The numerically simulated curve of control
rod worth is not even a smooth curve but with a lot of wiggles.
It is the so-called control rod cusping effect. Since 1980s, many
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methods have been investigated to eliminate it, such as flux-
volume-weighted method (Yamamoto, 2004; Dall’Osso, 2002)
and adaptive meshmethod (Zhang, 2014). The former has to obtain
an approximated flux distribution, while the later has to regener-
ate the spatial mesh after each control rod movement to avoid
the appearance of heterogeneous nodes.

Thirdly, traditional PWR core computation employs two-step
scheme: lattice calculation to provide assembly-homogenized
cross sections, then core diffusion calculation and pin-power
reconstruction to provide pin-power profile within the core. To
reduce the error introduced by assembly homogenization and
pin-power reconstruction, the following pin-by-pin scheme has
caught the concentration: assembly calculation with pin-cell
homogenization and then whole-core pin-by-pin calculation. Sev-
eral pin-by-pin calculation codes have been developed, such as
SCOPE2 (Tatsumi and Yamamoto, 2003) and EFEN (Li et al.,
2014). However, the whole-core pin-by-pin problem consists of
millions of meshes. Computational efficiency becomes one of main
problems in whole-core pin-by-pin calculation. For example, a
PWR can be divided into 10 million spatial meshes. Together with
the SP3 approximation and 4 energy groups, the calculation time is
about 24 h for a single CPU (Yang et al., 2014) if there is no
acceleration.

Fourthly, in recent years, High-Fidelity computing aims to carry
out whole-core heterogeneous simulations with homogenization
fully eliminated. In High-Fidelity computing of PWR, the hetero-
geneity within each pin-cell requires an extremely refined mesh
which leads to the total number of spatial meshes becoming bil-
lions. The increase of spatial meshes does not only increase the
number of unknowns, but also slows down the convergence. In this
case, the convergence can be significantly improved if a heteroge-
neous coarse-mesh nodal method can be employed to replace the
fine mesh methods.

To overcome difficulties from the above four scenarios, tradi-
tional homogeneous nodal methods are expected to be generalized
into heterogeneous nodal methods to maintain the computing effi-
ciency with high accuracy. Among those homogeneous nodal
methods, Variational Nodal Method (Palmiotti et al., 1995)
(VNM) is chosen due to its advantages (Lawrence, 1986; Wagner,
1989; Li et al., 2015) compared with the others. VNM is based on
a functional for even-parity transport equation and the nodes are
coupled together by odd-parity Lagrange multipliers. Response
matrices are obtained by using a Ritz procedure and the flux, cur-
rent and source are expanded by orthogonal polynomials. The
exclusion of the transverse integration technique in VNM guaran-
tees its advantages in accuracy.

Fanning and Palmiotti (Fanning and Palmiotti, 1997) developed
a heterogeneous nodal method based on VNM for piece-wise con-
stant heterogeneous nodes. The even- and odd-parity fluxes are
expanded by polynomials. Throughout the derivation, the func-
tional for the heterogeneous node is obtained which has the same
form as that in homogeneous VNM. To calculate the response
matrices, the heterogeneous node is divided into a number of
homogeneous elements and then the integrals over the node are
divided into a set of homogeneous integrals. This method has high
efficiency with low expansion order. However, when the configu-
ration and material is complicated within the heterogeneous node,
the flux will change sharply in space. As the flux is expanded by
polynomials over the entire node in this method, it’s difficult for
it to describe the flux distribution with sharp gradient accurately
over the node. Smith (Smith et al., 2003) developed another
heterogeneous Variational Nodal Method also for piece-wise con-
stant heterogeneous nodes. It divides each node into sub-
elements in which the cross sections are constants, and expands
the flux by finite trial functions in space and spherical or simplified
spherical harmonics in angle. In this method, high-order angular
approximation is required to obtain accurate results in the prob-
lems with sharp flux gradient throughout the geometry, while
the results are less sensitive to the refinement of the sub-
elements. The main disadvantage of this method is the low compu-
tational efficiency when high spherical harmonics expansion order
is adopted. Another heterogeneous nodal method for solving diffu-
sion equation was developed by Makoto Tsuiki (Tsuiki and Hval,
2002). The most distinctive feature of this method is that the flux
in a node is expanded into a set of functions which are numerically
obtained by single-assembly calculations without assembly
homogenization. Highly accurate results can be obtained because
the assembly heterogeneous effect is taken into account in the
single-assembly calculation. Besides, the accuracy of this method
can be improved simply by increasing the order of expansion.
However, computing the numerical expansion functions becomes
an additional burden of the method.

This paper mainly concentrates on the spatial distribution of the
flux and power affected by the heterogeneous node with diffusion
approximation adopted. To assess the performances of different
methods for different problems, we choose the one-dimensional
(1D) slab geometry. In this paper, two approaches are investigated
for the treatment of the nodal heterogeneity. In function expansion
(FE) method, the flux is expanded into the sum of polynomials and
the cross section is also expressed as a function of space. Addition-
ally, unlike the method developed by Fanning and Palmiotti, the
heterogeneous nodes needn’t to be divided into homogeneous ele-
ments which means this method can treat both continuous and
piecewise continuous cross section distribution. The finite sub-
element (FS) method employs finite-element basis functions to
expand flux in each node. In this method, the heterogeneous node
should be divided into homogeneous sub-elements.

The rest of this paper is organized as following. In Section 2, the
theories of two heterogeneous VNMs including the FE method and
the FS method are introduced in 1D slab geometry for neutron-
diffusion equation. In Section 3, the two methods are applied to
the four kinds of problems: MSR core problem, PWR control rod
cusping effect problem, PWR pin-by-pin problem and heteroge-
neous PWR core problem. The capabilities and limitations of these
two methods are then discussed.
2. Theory

This basic theory of homogeneous VNM is presented in
Palmiotti et al. (1995) and Li et al. (2015) clearly. Based on this,
Sections 2.1 and 2.2 introduce the treatments for heterogeneous
nodes in FE method and FS method respectively. The following the-
ory is derived in 1D slab geometry with diffusion approximation.
2.1. The function expansion heterogeneous Variational Nodal Method

To treat the heterogeneous nodes in FE method, the cross sec-
tions are assumed to be functions of space. Then the diffusion func-
tional for each node can be written as

Fv ½U;J�¼
Z
v
dV DðxÞ d

dx
UðxÞ

� �2

þ RtðxÞ�RsðxÞð ÞUðxÞ2�2UðxÞSðxÞ
( )

þ2
X2
c¼1

UðxÞJðxÞ:

ð1Þ

where U is the scalar flux (cm�2�s�1); D is the diffusion coefficient
(cm); Rt is the total cross section (cm�1); Rs is the within-group
scattering cross section (cm�1); S is the source term (cm�3�s�1)
including isotropic scattering and fission; c represents the surfaces
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of the node and Jc stands for the net current (cm�2�s�1) on the sur-
faces of the node.

Different from homogeneous VNM, all the cross sections in Eq.
(1) of a node are functions of the spatial variable. Therefore, an
explicit description of the material structure of the heterogeneous
node is allowed. The scalar flux and source in a node are then rep-
resented as:

UðxÞ ¼
X
i

uif iðxÞ

SðxÞ ¼
X
i

sif iðxÞ

8>><
>>: : ð2Þ

ui and si are the unknown coefficients and f iðxÞ are known orthog-
onal polynomials. Because of the heterogeneity in a node, the rela-
tionship between flux and source should be written as:

SðxÞ ¼ RðxÞUðxÞ þ 1
k
FðxÞUðxÞ; ð3Þ

RðxÞUðxÞ ¼
X
g0–g

Rs
gg0 ðxÞUg0 ðxÞ; ð4Þ

1
k
FðxÞUðxÞ ¼

X
g0

vg

k
mRf ;g0 ðxÞUg0 ðxÞ; ð5Þ

where k is the effective multiplication factor, vgmRf ;g0 and Rs
gg0 are

respectively the fission and scattering cross sections from energy
group g0 to g (cm�1). The cross sections in this equation are not con-
stants any more.

Substituting Eq. (2) into Eq. (3) leads to the relationship
between the flux and source moments:

si ¼
Z
v

RðxÞ þ 1
k
FðxÞ

� �
� ðu1f 1 þu2f 2 þ � � � þunf nÞ � f i

� �
dx; ð6Þ

which is more complicated than that in homogeneous VNM.
Substituting Eq. (2) into the functional, Eq. (1), yields the

reduced functional:

Fv ½u; j� ¼ uTAu� 2uTsþ 2uTMj; ð7Þ
where u, s and j are vectors constructed by the expansion moments
of the flux, the source inside a node and the net current on the sur-
face of a node. The matricesA and M is written as

Aii0 ¼
Z
v

DðxÞ � dfiðxÞ
dx

� dfi0 ðxÞ
dx

þ RtðxÞ � RsðxÞð Þf iðxÞf i0 ðxÞ
� �

dx; ð8Þ

Mic ¼ f iðxÞjx¼xc : ð9Þ
By comparing the homogeneous and heterogeneous VNM for-

mulas, it can find that the differences between them locates in
the source construction in Eq. (6) and the formulation of matrix
A. If the spatial depended cross section has a rational representa-
tion, we can obtain an analytic solution of the integrations in Eq.
(6) and Eq. (8); otherwise we have to obtain the numerical results
of the integrations. Once we obtain the response matrix A, all the
following derivation are the same as homogeneous VNM.

2.2. The finite sub-element heterogeneous Variational Nodal Method

To consider the nodal heterogeneity, each node is further
divided into a set of homogeneous sub-regions named sub-
elements. The nodal functional is now written as a superposition
of sub-element functional:

Fv ½U; J� ¼
X
e

Fe½Ue; J�; ð10Þ

where the element functional is written as:
Fe½Ue; J� ¼
Z
e
dV De

d
dx

UeðxÞ
� �2

þ Rt;e�Rs;eð ÞUeðxÞ2�2UeðxÞSeðxÞ
( )

þ2
X2
c¼1

UeðxÞJðxÞ:

ð11Þ
We expand the flux and source in a node as:

UðxÞ ¼
X
i

uiliðxÞ

SðxÞ ¼
X
i

siliðxÞ

8>><
>>: : ð12Þ

Here, the expansion functions liðxÞ are linear finite-element trial
functions. Because net current is continuous across sub-element
interfaces, the surface term in Eq. (11) only appears at the nodal
interfaces.

In one dimension, the flux and source in element e are given as:

UeðxÞ ¼ ue�le�ðxÞ þueþleþðxÞ
SeðxÞ ¼ se�le�ðxÞ þ seþleþðxÞ

�
; x 2 e; ð13Þ

where e� and eþ respectively stands for the left and right sides of
the element e. For the cross sections in each element are unique,
the relationship between flux and source moments is written as:

se� ¼ Re þ 1
k vRf ;e

� �
ue�

seþ ¼ Re þ 1
k vRf ;e

� �
ueþ

(
ð14Þ

Substituting Eq. (13) into the element functional in Eq. (11)
yields the reduced functional:

Fe½u; j� ¼ uT
eAeue � 2uT

eFese þ 2uT
eMej; ð15Þ

where

Ae;ii0 ¼
Z
e

De � dliðxÞdx
� dli0 ðxÞ

dx
þ ðRt;e � Rs;eÞliðxÞli0 ðxÞ

� �
dx; ð16Þ

Fe;ii0 ¼
Z
e
liðxÞli0 ðxÞdx; ð17Þ

Me;ic ¼ liðxÞjx¼xc : ð18Þ
We can find that the nodal expansion coefficients vector consist

of the expansion coefficients of all the elements in the node. Thus,
to obtain the nodal functional, we should map the element trial
function coefficients to the nodal expansion coefficients. This can
be easily achieved with a Boolean transformation matrix Ne which
provides the location information of element trial function coeffi-
cients in the nodal coefficient vector and ensures the continuity
across element interfaces:

ue ¼ Neu; ð19Þ

Substituting Eq. (19) into Eq. (15), and then substituting Eq. (15)
into Eq. (10) leads to the nodal functional:

Fv ½u; j� ¼ uTAu� 2uTsþ 2uTMj; ð20Þ
where

A ¼
X
e

NT
eAeNe; ð21Þ

s ¼
X
e

NT
eFese; ð22Þ

M ¼
X
e

NT
eMe: ð23Þ
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Once the reduced nodal functional is obtained, the following
procedure is as the same as the homogeneous VNM. However, dif-
ferent from the FE method, the FS method requires dividing the
nodes into homogeneous elements, so it is unable to treat the
nodes with continuous-changing cross sections.

3. Results

Two computer codes, Violet-Hom1D and Violet-Het1D, have
been developed to treat respectively 1D homogeneous and hetero-
geneous node problems with multigroup macroscopic cross sec-
tions. Violet-Hom1D is based on traditional VNM with diffusion
approximation. Two heterogeneous VNMs have been developed
in Violet-Het1D based on the theory aforementioned. Four typical
problems have been calculated to evaluate the methods and com-
puter codes developed in this paper.

3.1. MSR application

The 1D MSR core is 4 m long with local coordinate
origin located as the bottom. The vacuum boundary condition is
applied to both the top and the bottom of the core and the distri-
butions of macroscopic cross sections are described as linear
functions:

RaðxÞ ¼ 0:084� 0:004375x; x 2 ½0;4�m; ð24Þ

mRf ðxÞ ¼ 0:094� 0:005x; x 2 ½0;4�m; ð25Þ

RsðxÞ ¼ 1:035� 0:075x; x 2 ½0;4�m: ð26Þ
To measure the heterogeneity caused by the cross section gra-

dient, we define a quantity:

M ¼ kb1 � kt1 ð27Þ

where kb1 and kt1 are the infinite multiplication factors of the bot-
tom and the top of this core. The more M is greater than 0, the more
heterogeneous the core becomes. In this case, M equals to 0.0063.
According to MSRE (Engel and Haubenreich, 1962) which designed
by Oak Ridge National Laboratory, the inlet and outlet temperature
of the fuel and graphite in the hottest channel is 910 K, 960 K and
915 K, 965 K respectively. The reactivity coefficients of salt temper-
ature and graphite temperature are -8.5 pcm/K and -4.7 pcm/K
(Delpech et al., 2003) when U235 is loaded. We can approximately
calculate the value of M in the hottest channel in MSRE is about
0.0066. So the heterogeneity caused by cross section distribution
in our design is reasonable.

The fine mesh calculation was performed by Violet-Hom1D. It
divided the entire domain into 1920 homogeneous nodes with
3rd order polynomials expansion within each node. Other verified
codes, EFEN (Yang et al., 2014) and a Monte Carlo (MC) code, were
also applied with the same fine homogeneous regions to provide
independent verification. Violet-Het1D with the FE method was
used to calculate this problem. It divided the core into 4 nodes with
linear cross section in each node and the flux was expanded by a
7th order polynomials. In comparison, Violet-Hom1D was also
used to calculate this problemwith the same 4 nodes and 7th order
expansion. Besides, the homogenized cross sections of each node in
Violet-Hom1D are obtained by volume-weighted scheme.

The same eigenvalue (keff) 1.11691 was obtained by the fine
mesh calculation, EFEN and Violet-Het1D solutions. Violet-
Hom1D obtained the keff of 1.11693. In addition, the keff of MC cal-
culation is 1.11692 ± 0.00002. Actually, they had almost the same
eigenvalue with the error less than 2 pcm. The flux and error dis-
tributions are shown in Fig. 1. It can be observed that solutions
obtained by the fine mesh calculation, EFEN, MC code and
Violet-Het1D seem to agree pretty well with each other, while
the solution obtained by 4-node Violet-Hom1D shows obvious dif-
ference with others, especially at the flux peak. In MC solution, the
standard deviation of the flux distribution along the core is less
than 0.2% except at the top of the core. As the normalized flux
become less than 0.01 at the top of the core (from 390 cm to
400 cm), the standard deviation is about 3% there. To measure
the accuracy of the treatments for nodal linear cross sections, we
should first discuss the error distribution compared with fine mesh
calculation. We can find the error of the 4-node Violet-Hom1D
solution is waving along the core in a larger range, the error at
the peak of the flux distribution is 3.4% and the max error is
�4.5%. In contrast, the error of Violet-Het1D is more stable, the
error at the flux peak is around 0 and the max error is about
2.0% at the top of the core where the normalized flux is less than
0.01. When we take MC solution as the reference, we can find that
Violet-Het1D still has better accuracy than Violet-Hom1D. What’s
more, their error distributions within the core (except boundaries)
are almost as same as those when compared with fine mesh diffu-
sion calculation: the error of Violet-Het1D is less than 1.5% and the
error of Violet-Hom1D can be up to ±3.0%. Actually, it also proves
that diffusion approximation does not introduce obvious error
within the core as fine mesh diffusion solution agrees well with
MC solution. However, at the two boundaries of the core which
are applied with vacuum boundary condition, relatively larger
error happens for both Violet-Het1D and Violet-Hom1D: �5.4%�
5.0% for Violet-Hom1D and �1.7%�4.1% for Violet-Het1D. There
are several reasons for the errors along boundaries: firstly, the nor-
malized flux along the boundaries has small value (less than 0.01);
secondly, the diffusion approximation in Violet-Het1D and Violet-
Hom1D will certainly introduce some error near the vacuum
boundaries; additionally, MC calculation also has relatively larger
standard deviation there.

To further investigate the source of the error within the core, we
analysis three main factors: expansion order, number of nodes and
homogenization method. In the following analysis, we directly take
the MC solution as the reference. Firstly, this paper varies the
expansion orders both in Violet-Hom1D and Violet-Het1D with
the number of nodes fixed. The errors at flux peak are shown in
Fig. 2. We can find that when the expansion order is below 5, the
error decreases with the increasing of expansion order. However,
when the expansion order increases to higher than 5, the error
becomes stable: the error of Violet-Het1D is about 0.2%; while
the error of Violet-Hom1D is about 3.4%, much larger than that
in Violet-Het1D. Therefore, increasing the expansion order obtains
little improvement in the problem; it’s not the main source of error
in Violet-Hom1D.

Secondly, an additional comparison is made about the number
of nodes. The expansion order is 7 in both Violet-Hom1D and
Violet-Het1D. And also the errors at flux peak are shown in
Fig. 3. We can find that increasing the number of nodes obtains
obvious improvements for Violet-Hom1D. However, it requires
more nodes in Violet-Hom1D than Violet-Het1D to reach the same
accuracy. For example, when Violet-Het1D adopts 4 nodes, Violet-
Hom1D should adopt about 16 nodes to obtain the solution with
the same precision which will definitely reduce the computational
efficiency.

Thirdly, to obtain the flux spectrum for the two nodes at the
outer boundary, single node calculation with vacuum and reflec-
tive boundary conditions were carried out, while single node with
reflective boundary conditions were done for the two nodes in the
center of the core. We didn’t consider the discontinuous factor in
this case because when axial rehomogenization is carried out in
engineering design, discontinuous factor is actually not taken into
consideration. The approximate flux-volume-weighted homoge-
nized cross sections are generated by:
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Rx ¼
R
RxðxÞ/ðxÞdxR

/ðxÞdx : ð28Þ

The results are shown in Fig. 4. Compare with Fig. 1, we can find
the flux peak fits better to the reference and the error is about 1.9%.
However, the error of the rest part of the core increases, the error
reaches 5–10% at the middle of the core. In a word, the solution is
still not satisfactory even with the approximate flux-volume-
weighted homogenization.

In summary, when homogeneous VNM is adopted to treat con-
tinuous cross section distributions in the MSR problem, the most
effective way to reduce the error caused by homogenization is to
employ fine nodal mesh. However, the increase number of nodal
mesh will reduce the computational efficiency definitely. In con-
trast, the numerical results show that heterogeneous VNM is cap-
able of obtaining accurate flux distribution without homogenizing
the continuous cross sections in large-size nodes. In addition, the
flux error of Violet-Hom1D increases with the heterogeneity of
the core relatively, while the error of Violet-Het1D is almost fixed.
To demonstrate this point, the paper listed the errors at the flux
peak with respect to the heterogeneity of the core by using
Violet-Het1D and Violet-Hom1D as indicated by Fig. 5.when M is
in the range from 0 to 0.08, the errors of Violet-Het1D are always
less than 0.5%, but the errors of Violet-Hom1D seem to increase
approximate linearly with M.
3.2. Control rod cusping effect

Nodal methods have been widely used in PWR core design and
safety analysis. Mostly, we take a whole assembly or a quarter of
an assembly as one node and 10–20 cm per mesh in axial direction.
The homogeneous cross sections in each node are provided by lat-
tice calculation. Actually, control rods keep moving along the axial
direction within the reactor core with a step size of about 2 cm,
which may cause the appearance of nodes with partially inserted
control rods. Unfortunately, almost all of the PWR lattice codes
are in two-dimensional and thus cannot directly provide the
homogenized cross section of the axially heterogeneous nodes.
Actually, the homogenized cross sections of the nodes with par-
tially inserted control rods are obtained by equivalent weighting
methods (Si, 2006).
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In some early core-analysis codes, volume-weighted method is
adopted, which is equivalent to the assumption of flat flux within
the node. In fact, the insertion of control rods greatly affects the
shape of flux distribution, especially the thermal flux. The flux is
much depressed for the region with the control rods. As a result,
it causes the numerically simulated curve of control rod differen-
tial worth different from the theoretically predicted shape. The
numerically simulated curve of control rod worth is not even a
smooth curve but with a lot of wiggles which introduced by
directly volume-weighted schedule to obtain a constant macro-
scopic cross section. This phenomenon is the so-called control
rod cusping effect which has negative effects on the core analysis,
such as introducing extra errors in the analysis of some control-
rod-initiated events and affecting on the calculation of axial power
offset (AO).

Since the 1980s, many methods have been investigated to elim-
inate the control rod cusping effect which can be classified into
three categories: approximate flux-volume-weighted method
(Yamamoto, 2004), reconstructed axial flux-volume-weighted
method (Dall’Osso, 2002) and adaptive mesh method (Zhang,
2014).
The approximate flux-volume-weighted method utilizes the
average fluxes of the nodes with partially inserted control rods
and the two adjacent nodes. If node k is partially inserted with con-
trol rod, nodes k � 1 and k + 1 are the two adjacent nodes. In addi-
tion, nodes k � 1 and k + 1 are the nodes without inserted control
rods and with inserted control rods respectively. The average
fluxes of the inserted section (R) and the non-inserted section
(NR) of node k are approximated by:

/NR ¼ Dzk�1/k�1 þ ð1� f RÞDzk/k

Dzk�1 þ ð1� f RÞDzk
; ð29Þ

/R ¼ Dzkþ1/kþ1 þ f RDzk/k

Dzkþ1 þ f RDzk
; ð30Þ

where Dz stands for the size of the node in axial direction and f R is
the insertion percentage of the control rod. Then the homogenized
cross section of the node with inserted control rods is obtained by:

Rx ¼ ð1� f RÞRNR;x/NR þ f RRR;x/R

ð1� f RÞ/NR þ f R/R
: ð31Þ

This method is very efficient because it only utilizes the average
fluxes of three adjacent nodes. However, the issue is its accuracy
due to the accuracy of /R and /NR .

In reconstructed axial flux-volume-weighted method, the
reconstruction procedure is carried out to obtain the flux distribu-
tion in the nodes with inserted control rods by using nodal surface
flux and current. The homogenized cross section is then calculated
by:

Rx ¼
R Dzk
0 Rx/dzR Dzk
0 /dz

: ð32Þ

Obviously, the accurate flux distribution improves the precision
of the solution. However, the reconstruction of the axial flux
decreases its efficiency relatively.

The adaptive mesh method doesn’t adopt the flux-volume-
weighted scheme to obtain the homogenized cross sections. It gen-
erates the meshes according to the position of control rods to
ensure the bottoms of control rods aligned with the surfaces of
the nodes. It avoids the heterogeneous nodes. However, problems
arise from several aspects. First, it makes the core-analysis code
more complicate for generating adaptive meshes. Second, it
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increases the number of total nodes in the core which reduces the
calculation efficiency. Third, if the bottoms of several control rods
are very close in the axial direction, some layers of nodes would be
very thin in the axial direction which may make it difficult for
nodal method to converge.

In conclusion, approximate flux-volume-weighted method has
high efficiency but low accuracy; reconstructed axial flux-
volume-weighted method has high accuracy with relatively low
efficiency; the adaptive mesh method avoids the control rod cusp-
ing effect by regenerating meshes, but it has some other problems
as mentioned before. So is there a method that provides both high
efficiency and accuracy without regenerating the meshes? Hetero-
geneous VNM is a good choice. It uses fixed meshes and treats the
heterogeneous nodes directly without cross-section homogeniza-
tion. It provides the accurate flux distribution in the nodes with
inserted control rods.

We consider a 1D core with 4 m long. There are two types of
material in the core: fuel with control rod fuel without control
rod as shown in Fig. 6. The two-group homogeneous cross sections
of the materials are listed in Table 1. The control rod moves along
the axial direction with 2 cm each step. NECP-Cypress (Li et al.,
2016) was adopted to obtain the reference solution of differential
worth of the control rod. In this case, the core was divided into
200 nodes with the uniformmesh of 2 cm. Let the control rod move
from the top to the bottom of the core. Then we utilized NECP-
Cypress to calculate this problem every time the control rod took
a step. To simulate a practical core calculation by using Violet-
Hom1D, the entire core is divided to 20 nodes with each node
20 cm long. With the traditional volume-weighted method and
5th order flux expansion, the control rod cusping effect occurs as
shown in Fig. 7. In contrast, Violet-Het1D explicitly describes the
nodal heterogeneity. With the FE method, it uses 20 nodes and
5th order of expansion, while 20 nodes and 10 elements in each
node for the FS method. As shown in Fig. 7, the solutions provided
by Violet-Het1D fit the reference very well. It completely elimi-
nates the control rod cusping effect and doesn’t need any extra
Table 1
The two-group homogeneous cross sections in the problem of control rod cusping effect.

Material Energy group D/cm

Fuel with control rod 1 6.62032
2 5.96837

Fuel without control rod 1 6.62032
2 6.06061

Control rod
(moves by 2cm/step)

Fuel

Material 1:
Fuel with control rod

4m

Material 2:
Fuel without control rod

Fig. 6. Configuration of the one dimensional reactor core in the problem of control
rod cusping effect.
weighted scheme to obtain the homogeneous cross sections in
the heterogeneous nodes.

Fig. 8 shows the comparison of power distribution when the
control rod takes 105 steps (210 cm from the top of the core) down
into the core. We can find from the error that when volume-
weighted homogenization scheme is adopted within the heteroge-
neous node, the power of the part with control rod is higher than
the reference while the power of the part without control rod is
lower than the reference with the error of about 0.5%. So along
with the control cusping effect, volume-weighted homogenization
also affects the power distribution of the core which will further
affect the calculation of AO. While, the power distribution obtained
by Violet-Het1D agrees well to the reference, the maximum rela-
tive error of FE method is about 0.15% and the maximum error of
FS method is 0.05%.

The computing time for the four schemes is shown in Table 2.
We can find the FS method takes more time than the FE method
mainly because the dimension of the response matrix A is
11 � 11 which is larger than 6 � 6 in the FE method. Violet-
Het1D with the FE method takes a little more time than Violet-
Hom1D in calculating the response matrix because of the nodal
heterogeneity as shown in Eq. (8). The iteration time of Violet-
Hom1D and Violet-Het1D with the FE method is the same with
the same expansion order.
3.3. PWR Pin-by-pin problem

In order to evaluate Violet-Het1D’s ability of treating compli-
cated heterogeneity, we design an 1D PWR pin-by-pin problem
respectively with pin-cell-homogenized macroscopic cross sec-
tions. The center symmetric configuration of the entire reactor core
is shown in Fig. 9. Only half of the core is simulated during these
calculations. The pin-by-pin assembly configurations are shown
in Fig. 10. The single-group cross sections of this problem are listed
in Table 3.
Ra/cm�1 mRf/cm�1 Rs,12/cm�1 v

0.0 0.0 0.05035 1.0
0.05585 0.05400 0.0

0.0 0.0 0.05035 1.0
0.05500 0.05600 0.0
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A1 (Fuel assembly with control rods)
Fuel Control rod Water

A2 (Fuel assembly without control rods)
Fuel Water

A3 (Reflector assembly)
Water

Fig. 10. Configuration of the pin-cell homogenized assemblies (1.26 cm each pin
cell).

Table 2
Comparison of computing time of different calculation schemes in the control rod cusping effect case.

Scheme Reference Violet-Hom1D Violet-Het1D (expansion method) Violet-Het1D (sub-element method)

Time/s 366.2 22.0 27.6 43.6

A3   A1   A2   A1   A2   A1  A2   A1   A2   A1   A2   A1  A2   A1   A2   A1   A3   Vacuum Vacuum

A1:Fuel assembly with control rods;  A2:Fuel assembly without control rods;  A3:Reflector assembly

Fig. 9. Configuration of the one dimensional reactor core in the pin-by-pin problem
(21.46 cm each assembly).
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Ideally the neutron-transport equation should be solved in this
problem. However, in order to evaluate Violet-Het1D’s ability of
treating spatial heterogeneity, the neutron-diffusion equation
was solved for demonstration purpose. The fine mesh solution
was obtained with Violet-Hom1D by taking each pin as a node
(1.26 cm). It is sufficient to adopt 3th order expansion in this prob-
lem with small nodes. For Violet-Het1D, each assembly (21.42 cm)
containing 17 pins was taken as a node. Additionally, a MC code
was also adopted in this problem to make the comparison more
adequate. The results of keff are shown in Table 4, while the flux
and pin power distributions are shown in Figs. 11 and 12 respec-
tively together with their relative errors comparing with both fine
mesh and MC solutions. In MC solution, the standard deviation of
the flux distribution in the fuel assemblies is less than 0.2%. How-
ever, in the reflector region where the normalized flux decreases
from 0.01 to 0.001, the standard deviation increases from 2% to
10% there.

Firstly, we would like to analyze the accuracy of FE method in
this problem. To evaluate the error introduced by the treatment
for heterogeneous node, we should directly compare with fine
mesh solution because they both solve the diffusion equation
and the only difference between them is the nodal mesh. By com-
paring with fine mesh solution, we can find that when 7th order of
polynomials is adopted in the FE method, the error of keff is
�129 pcm. The maximum relative error of the flux and pin power
are about 20% which is unacceptable obviously. Further increasing
the expansion order improves the accuracy of the solution. As
shown in Table 4 and Fig. 11, when the expansion order is
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Table 3
The single-group homogeneous cross sections of the pin-by-pin problem.

Material D/cm Ra/cm�1 mRf/cm�1 Rs/cm�1

Fuel 0.2979 0.0840 0.0940 1.0350
Control rod 0.3017 0.0609 0.0 1.0440
Water 0.2684 0.0066 0.0 1.2354

Table 4
The results of keff with different expansion order.

MC code Fine mesh
calculation

Violet-
Het1D-7

Violet-
Het1D-20

keff 1.03881 ± 0.00002 1.03811 1.03682 1.03804
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increased up to 20, the error of keff can be reduced to �7 pcm while
the maximum relative error of the flux and pin power decreases to
3%. However, it becomes 5-time less efficient as indicated in
Table 5. Although it reduces the number of iterations by requiring
much less number of nodes, it has to cost more computing effort
Table 5
Comparison of node number and computing time with different expansion order.

No. of
nodes

Response matrices
construction time/s

Iteration
time /s

Total
time /s

Fine mesh calculation 145 0.0 1.59 1.59
Violet-Het1D-7 9 0.02 0.15 0.17
Violet-Het1D-20 9 0.39 0.42 0.81
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within each iteration. Actually, FE method cannot achieve high
accuracy in this problem because the large gradient of flux caused
by strong discontinuity in cross section is difficult to be expanded
by polynomials. If we compare the FE method with MC solution,
the error is consisted of two parts: first, the error introduced in
by the treatment of heterogeneous nodes which has been mea-
sured by comparing with fine mesh solution above; second, the
error introduced by diffusion approximation in Violet-Het1D. As
indicated in Table 4, the errors of keff are �199 pcm and �77 pcm
respectively for 7th and 20th expansion order. Moreover, by com-
paring the error distributions in Figs. 11 and 12, we can find the
two set of error distributions by comparing with fine mesh and
MC solution respectively are very similar along the core except
the reflector region which is close to the vacuum boundary and
the pin cells which are close to control rods. It proves the second
part of error mentioned above can be ignored except at the reflec-
tor region the pin cells around control rods. Actually, in the reflec-
tor region, the normalized average flux is smaller than 0.01 and it
has relatively larger standard deviation. So if we pay more atten-
tion to the flux and power distribution in the fuel assemblies, we
can find the error of the pin cells around control rods increases
by 2–3% when comparing with MC code which means diffusion
approximation has an error of 2–3% here.

The FS method was also tested to treat the pin-by-pin hetero-
geneity. Each assembly was taken as a node and two different
numbers of elements in each node were calculated: 51 elements
(3 elements in each pin) and 68 elements (4 elements in each
pin). The results of keff are shown in Table 6 and the results of flux
and pin power are shown in Figs. 13 and 14 respectively together
with their relative errors comparing with both fine mesh and MC
Table 6
The results of keff for the sub-element method in the PWR pin-by-pin problem.

MC code Fine mesh
calculation

Violet-
Het1D-51

Violet-
Het1D-68

keff 1.03881 ± 0.00002 1.03811 1.03803 1. 03807
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Fig. 13. Flux distribution comparison with different number o
solutions. We can find from Table 6 that accurate keff can be
obtained when compare with fine mesh calculation with the error
less than 10 pcm; both fine mesh calculation and Violet-Het has
about -70 pcm difference with MC code. As is shown in Figs. 13
and 14, the maximum relative error of flux and pin power is about
1.8% and 1.0% respectively for 51 and 68 elements in each node
when compare with fine mesh solution. When it is compared with
MC code, the maximum relative error is about 4.0% in the fuel
assemblies. As this paper aims to evaluate the treatments for
heterogeneity in FE and FS method, we can conclude that the FS
method has more precise treatments than FE method because its
solution shows better agreement with fine mesh solution. By com-
paring with MC solution, we can find that the error of pin-power
around the control rods increases by 2% in both FE and FS method
because of diffusion approximation.

The comparison of computing time is shown in Table 7. Firstly,
the time for computing response matrices in FS method is much
shorter than that in FE method with 20 expansion order (in Table 5)
although the size of response matrices is much larger in FS method.
The main reason is that the expansion functions are all linear
functions which are easier to integrate. However, the large size
of the response matrices will increase the time for iteration. When
each node is divided into 68 elements, the dimension of the
response matrix A is 69 � 69 and the time for iteration is 1.26 s,
while the total computing time is 1.28 s which is just a little
shorter than the computing time of the fine mesh calculation.
However, when the problem becomes larger, the reducing number
of nodes will obviously make the FS method more efficient. So in
this problem, it is suitable to use the FS method with 68 elements
in each node to obtain the results with relatively high efficiency
and accuracy.
3.4. Heterogeneous PWR core problem

In the heterogeneous PWR core problem, the fuel rod and mod-
erator are separated within each pin-cell, resulting in more compli-
cated cross section distribution within each assembly. The
configurations of the core and assemblies are shown as Figs. 9
and 10. In addition, the fuel pin and control rod pin consist of fuel
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Table 7
Comparison of node number and computing time with different number of elements
in each node in the PWR pin-by-pin problem.

No. of
nodes

Response matrices
construction time/s

Iteration
time /s

Total
time/s

Fine mesh calculation 145 0.0 1.59 1.59
Violet-Het1D-51 9 0.01 0.87 0.88
Violet-Het1D-68 9 0.02 1.26 1.28
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Fig. 14. Pin power distribution comparison with different number of elements in each node in the PWR pin-by-pin problem.

Table 8
The results of keff with different number of elements in each node in the
heterogeneous PWR core problem.

MC code Fine mesh
calculation

Violet-
Het1D-68

Violet-Het1D-
136

keff 1.00721 ± 0.00002 1.00632 1.00622 1.00630
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rod and control rod in the middle and moderator surrounded it as
shown in Fig. 15. Based on the analysis and conclusions in Sec-
tion 3.3, we can find FE method is not capable of calculating accu-
rate flux distribution in the problems with complicated
configuration in the heterogeneous nodes. As this problem has
more complex configuration within the assemblies than the pin-
by-pin problem, only FS method is applied to it.

To obtain the solution of fine mesh calculation, we take 1/4 pin
cell as a node (0.315 cm) in Violet-Hom1D and the expansion order
Fig. 15. Geometry information of the fuel pin and control rod pin in the
heterogeneous PWR core problem.
is 3. A MC code is also employed in this problem to make the com-
parison. Additionally, the standard deviation of MC calculation of
the flux distribution in the fuel assemblies is less than 0.2% and
it increases from 2% to 12% in the reflector region as the normal-
ized flux become very low. Then we calculate the problem using
Violet-Het1D with the FS method. We take an assembly as one
node and two different numbers of elements in each node are
calculated: 68 elements (4 elements in each pin) and 136 elements
(8 elements in each pin). Table 8 shows the results of keff: Violet-
Het1D and fine mesh calculation obtain very similar eigenvalue
with the difference of less than 10 pcm which proves the high
accuracy of the treatment for heterogeneity in FS method. How-
ever, they both have a difference of about �90 pcm with MC code
due to the diffusion approximation. Figs. 16 and 17 indicate that
the flux and power distribution calculated by Violet-Het1D fits
the fine mesh solution very well and the maximum relative error
is about 1.5% and 0.5% when 68 and 136 elements are used in each
assembly respectively. From the error distributions of flux and
power comparing with MC code, we can find pin cells in the assem-
blies with control rods always have larger error. Fig. 17 indicates
that most of the pin power errors are less than 2% while the error
can be 3% when it’s close to the reflector. As shown in Fig. 16, same
as the previous problem, the flux distribution has larger error in
the reflector due to its small order of magnitude (along with large
standard deviation in MC calculation) and the diffusion approxi-
mation at vacuum boundary.

Table 9 lists the computing time of the FS method, which is only
10% and 25% of fine mesh calculation. Thus, the FS method obtains
high efficiency in this problem while accurately treating the nodal
heterogeneity.
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Table 9
Comparison of node number and computing time with different number of elements
in each node in the heterogeneous PWR core problem.

No. of
nodes

Response matrices
construction time/s

Iteration
time/s

Total
time/s

Fine mesh calculation 578 0.0 13.8 13.8
Violet-Het1D-68 9 0.02 1.11 1.13
Violet-Het1D-136 9 0.11 3.30 3.41
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Fig. 16. Flux distribution comparison with different number of elements in each node in the heterogeneous PWR core problem.

Y. Wang et al. / Annals of Nuclear Energy 101 (2017) 36–48 47
4. Conclusion

In this paper, we have introduced two generalized Variational
Nodal Methods for treating heterogeneous nodes and the numeri-
cal results have shown the comparisons of the two methods in
their applications to different problems. The function expansion
(FE) method assumes the cross sections are functions of space
and directly put these cross sections functions into the integration
to compute the response matrices. This method can treat both con-
tinuous and piecewise continuous cross section distribution. The
finite sub-element (FS) method breaks the heterogeneous node
into small homogeneous elements and adopts linear finite-
element trial functions as expansion functions. Codes Violet-
Het1D and Violet-Hom1D are developed respectively based on
heterogeneous and homogeneous VNM.

The FE method has been applied to a one dimensional Molten
Salt Reactor (MSR) problem with spatially continuous cross sec-
tions. With the same expansion order and number of nodes,
Violet-Het1D can get more precise solution than Violet-Hom1D.
Additionally, the relative error at the flux peak obtained by
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Violet-Hom1D seems to increase approximate linearly along with
the heterogeneity of the core while the solution of Violet-Het1D
maintains the high precision.

By employing the FE and FS methods to calculate the differen-
tial value of the control rod, we have found that both of them
can eliminate the control rod cusping effect and obtain the accu-
rate power distribution of the core.

By applying the FE method to the pin-by-pin problem, we have
found that it is difficult to obtain the accurate solution even high
expansion order is adopted because of the complicated configura-
tion of the assembly. Besides, the time for computing response
matrices increases rapidly with the expansion order. In contrast,
the FS method can obtain the acceptably precise solution with
the shorter time than that of the fine-mesh homogeneous VNM.

By applying the FS method to the heterogeneous Pressurized
Water Reactor (PWR) core problem, we find that the FS method
can obtain accurate results while maintain relatively high
efficiency.

Considering the encouraging conclusions, these two heteroge-
neous nodal methods developed in this paper will be expanded
to the neutron-transport equation and to three-dimensional geom-
etry in the future.

Acknowledgment

This work was financially supported by the National Natural
Science Foundation of China (11305123) – China.

References

Dall’Osso, A., Oct. 7–10, 2002. Reducing Rod Cusping Effect in Nodal Expansion
Method Calculation, PHYSOR, Seoul, Korea.

Delpech, M., Dulla, S., Garzenne, C., Kophazi, J., et al., Nov., 2003. Benchmark of
dynamic simulation tools for molten salt reactors. In: Nuclear Science and
Technology: Meeting the Global Industrial and R&D Challenges of the 21st
Century. New Orleans, United States.
Engel, J.R., Haubenreich, P.N., 1962. Temperatures in the MSRE Core During Steady-
state Power Operation. Oak Ridge National Lab, Tenn.

Fanning, T.H., Palmiotti, G., 1997. Variational nodal method with heterogeneous
nodes. Nucl. Sci. Eng. 127, 154–168.

Lawrence, R.D., 1986. Progress in nodal methods for the solution of the neutron
diffusion and transport equations. Prog. Nucl. Energy 17, 271–301.

Li, Y., Cao, L., Yuan, X., Sept. 28–Oct. 3, 2014. High Order Source Approximation for
the EFEN method. PHYSOR, Kyoto, Japan.

Li, Y., Wang, Y., Liang, B., Shen, W., 2015. Partitioned-matrix acceleration to the
fission-source iteration of the variational nodal method. Prog. Nucl. Energy 85,
640–647.

Li, Y., Yang, W., Wu, H., Cao, L., Jun. 12–16, 2016. NECP-Cypress: development and
benchmarking of a 3D PWR core analysis code. In: ANS Summer Meeting. New
Orleans, United States.

Palmiotti, G., Lewis, E.E., Carrico, C.B., 1995. VARIANT: VARIational Anisotropic
Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry
Calculation. Argonne National Laboratory, Argonne, IL USA. ANL-95/40.

Si, S., Jul. 1, 2006. Application research on the correction method of control rod
cusping effect in three-dimensional core-analyze nodal code. In: Reactor
Physics Conference (in Chinese). Harbin, China.

Smith, M.A., Tsoulfanidis, N., Lewis, E.E., Palmiotti, G., Taiwo, T.A., 2003. A finite
subelement generalization of the variational nodal method. Nucl. Sci. Eng. 144,
36–46.

Tatsumi, M., Yamamoto, A., 2003. Advanced PWR core calculation based on multi-
group nodal-transport method in three-dimensional pin-by-pin geometry. J.
Nucl. Sci. Technol. 40 (6), 376–387.

Tsuiki, M., Hval, S., 2002. A variational nodal expansion method for the solution of
multigroup neutron diffusion equations with heterogeneous nodes. Nucl. Sci.
Eng. 141, 218–235.

Wagner, M.R., 1989. Three-dimensional nodal transport methods for hexagonal-z
geometry. Nucl. Sci. Eng. 103, 377–391.

Wagner, M.R., Koebke, K., 1983. Progress in Nodal Reactor Analysis. In: Proc. Topl.
Mtg. Advances in Reactor Computations, Salt Lake City, Utah, Mar. 28–31, 2,
941.

Yamamoto, A., 2004. A simple and efficient control rod cusping model for three-
dimensional pin-by-pin core calculation. Nucl. Technol. 145.

Yang, W., Zheng, Y., Wu, H., Cao, L., Li, Y., 2014. High-performance whole core pin-
by-pin calculation based on EFEN-SP3 method. Nucl. Power Eng. (in Chinese) 35,
164–167.

Zhang, T., Jul. 7–11, 2014. Development of HEFT code system for the analysis of
highly heterogeneous research reactors. In: Proceedings of the 2014 22nd
International Conference on Nuclear Engineering, ICONE22. Prague, Czech
Republic.

http://refhub.elsevier.com/S0306-4549(16)31006-4/h0015
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0015
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0020
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0020
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0025
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0025
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0035
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0035
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0035
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0045
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0045
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0045
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0055
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0055
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0055
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0060
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0060
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0060
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0065
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0065
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0065
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0070
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0070
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0080
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0080
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0085
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0085
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0085
http://refhub.elsevier.com/S0306-4549(16)31006-4/h0085

	Investigation on generalized Variational Nodal Methods for heterogeneous nodes
	1 Introduction
	2 Theory
	2.1 The function expansion heterogeneous Variational Nodal Method
	2.2 The finite sub-element heterogeneous Variational Nodal Method

	3 Results
	3.1 MSR application
	3.2 Control rod cusping effect
	3.3 PWR Pin-by-pin problem
	3.4 Heterogeneous PWR core problem

	4 Conclusion
	Acknowledgment
	References


