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Abstract: Assembly few-group homogenized cross-sections are the most basic input parameters for core 

calculation in the traditional two-step method. Therefore, it is necessary to perform few-group homogenized 

cross-section sensitivity and uncertainty analysis for the subsequent sensitivity and uncertainty analysis of 

core calculation. Based on generalized perturbation theory, the method to calculate the sensitivity coefficients 

of few-group homogenized cross-sections with respect to nuclear cross-sections is studied, which can take the 

implicit sensitivity into account with the subgroup method for resonance calculation. A covariance library is 

created based on ENDF/B-VII.1 data. The few-group homogenized cross-section uncertainties are obtained 

based on the sandwich rule. A sensitivity and uncertainty analysis code called NECP-COLEUS is developed 

based on the platform of lattice-physics code NECP-CACTI. Two typical PWR cell cases are calculated and 

analyzed. The response sensitivity coefficients show good agreement with those obtained by the reference 

method, i.e. direct perturbation method. The numerical results indicate that the uncertainties of some PWR 

few-group homogenized cross-sections exceed 1%, and the capture and non-elastic scattering cross-section of 

U238 are often the most significant uncertainty contributors. In the case of MOX fuel, the capture 

cross-sections of plutonium isotopes are also important uncertainty contributors. 
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1 Introduction 

Generally, there are three uncertainty sources in the 

reactor physics calculation: 1) module; 2) numerical 

method; 3) input parameter. Because of the 

unavoidable deficiency of measuring equipment and 

measuring method, the nuclear data values are 

usually given with uncertainties. As significant input 

parameters for reactor physics calculation, the 

uncertainties of nuclear data will affect the 

calculation results of reactor physics. The assessment 

of sensitivity and uncertainty related to nuclear data 

has become a hot issue internationally[ 1 ][ 2 ]. A 

lot of numerical results show that the nuclear data is a 

very important uncertainty source in reactor physic 

calculation[3].  

The framework of sensitivity and uncertainty(S&U) 

analysis for LWR was proposed by OECD LWR 

UAM in 2006[2], which is widely recognized. The 

reactor physics calculation is based on the traditional 

two-step scheme in this framework. The few-group 

homogenized cross-sections connect the assembly 

calculation and core calculation. To evaluate the core 

parameter uncertainties, the sensitivity and 

uncertainty analysis of assembly parameters should 

be performed firstly. To perform the assembly 

few-group homogenized cross-section S&U analysis, 

a code named NECP-COLEUS is developed based on 

the lattice-physics code NECP-CACTI[4]. The main 

contents include: 

(1) The S&U analysis method for few-group 

homogenized cross-sections is proposed based on 

the generalized perturbation theory, and the 

implicit sensitivity can be taken into account 

with the subgroup method being used for 

resonance calculation;  

(2) The uncertainties of few-group homogenized 

cross-sections, which are induced by the nuclear 

data, are quantified, and the uncertainty sources 

are analyzed.  

 

2 Methodology 

A few-group homogenized cross-section has the form 

of 

 ,

x

x h

Σ Φ
Σ

Φ
   (1) 

where x is the cross-section type; h is the group index 

of few-group cross-sections; ,x hΣ  is the few-group 

cross-sections; xΣ  is the multi-group macro 
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cross-sections; Φ is neutron flux;  denotes 

integration over appropriate phase space. 

The Generalized Perturbation Theory(GPT) is well 

suitable for the sensitivity analysis of response which 

has the form of linear ratio of flux[ 5 ]. The 

corresponding generalized adjoint equation is given as 

follow according to GPT[5][6] 

 * * 1x

x

Σ
Γ =

Σ Φ Φ
M   (2) 

where M* is the adjoint operator of neutron transport 

operator; *Γ  is the generalized adjoint flux.  

Then the relative sensitivity coefficients can be 

evaluated as follow 

  
,

, ,

,

*

d /

d /
d / d d

d

x h

x h x h

Σ σ

x

x

Σ Σ
S

σ σ
Σ σ Φ

σ σ Γ Φ
Σ Φ σ



 
M

  (3) 

where M is the neutron transport operator; σ is a 

specific multi-group cross-section. R will represent 

arbitrary response which has the Eq. (1) form 

hereinafter for simplification. 

It should be noted that the sensitivity coefficients 

obtained above are direct effects of multi-group 

cross-sections on the responses during the solution 

process of neutron transport equation. However, 

resonance calculation is necessary before multi-group 

neutron transport calculation is performed. The 

perturbation of the cross-sections will influence the 

responses through resonance calculation indirectly, 

which is called implicit sensitivity[7]. Therefore, the 

key point to take the implicit sensitivity into account is 

to calculate the resonance cross-section sensitivity 

coefficients. The subgroup method is applied in 

resonance calculation in this study. In the subgroup 

method, the effective self-shielding cross-section is 

defined as  
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where x is the reaction index; g is the energy-group 

index; i is the subgroup index; ,x gσ  is the effective 

self-shielding cross-section;  xα E  is the 

continuous-energy cross-section;  E  is the weight 

flux; gE  is the energy rang of the g-th group; , ,x g iσ  

is the subgroup cross-section; ,g i  is the subgroup 

flux and N is subgroup total number.  

Applying the GPT-based method, the sensitivity 

coefficient of effective self-shielding cross-section 

with respect to the continuous-energy cross-sections 

is given as[8] 
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where  ,g iQ  is the source term of subgroup transport 

equation, which is equal to 
p iΣ p  in the 

NR-approximation-based subgroup method. 
pΣ  is 

the potential scattering cross-section. Ls is the 

subgroup transport operator. *

gΓ  is the generalized 

adjoint subgroup flux, which is the solution of 

generalized adjoint subgroup transport equation given 

as following.  

 * * *

t,( , ) ( ) ( , )g g g gΓ Σ Γ Q   Ω r Ω r r Ω   (6) 

where *

gQ  is the generalized adjoint source.  

There are two terms on the right hand of Eq. (5). The 

first term is called direct term. When α and σx,g are 

the cross-sections of a same resonance nuclide, this 

term is nonzero. The second term is called indirect 

term. It is caused by the perturbation of subgroup 

flux when the cross-sections are perturbed.  

When α is the cross-sections of a non-resonance 

nuclide, the indirect term can be calculated after the 

generalized adjoint subgroup flux is obtained. 

However, when α and σx,g are the cross-sections of 

the same resonance nuclide, the subgroup parameter 

sensitivity coefficients need to be calculated. 

According to the narrow resonance(NR) 

approximation, the subgroup flux can be described as  

 0
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i
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  (7) 

where σ0 is the background cross-section; pi is the 

subgroup weight and σt,i is subgroup total 

cross-section. The resonance cross-section can be 

approximately given as  
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Taking the derivative of both side of Eq. (8), the 

following relationship can be obtained 
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 (9) 
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The left-side hand term can be obtained by NR 

approximation[ 9 ][ 10 ]. The unknown subgroup 

parameter sensitivity coefficients are included in the 

right-side hand term. It can be found that there is a 

linear relationship in Eq. (9). Therefore, the linear 

least-squares method can be applied to solve this 

problem.  

On the other hand, when α is the cross-section of a 

non-resonance nuclide, the 
, ,g iQ αS  is equal to zero. 

Otherwise,  
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The resonance cross-section sensitivity coefficients 

can be obtained according to Eq. (5) up to now. 

Therefore, the total sensitivity coefficient which takes 

the implicit effect into account is expressed as 
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 (11) 

where x, y and ω are reaction indexes; i and j are 

nuclide indexes; g’, g and h are group indexes; α is 

continuous-energy cross-section; σ is the multi-group 

cross-section.  

 

2.2 The solution of generalized adjoint equation 

For generalized adjoint equation shown as Eq. (2), 

the adjoint transport operator is singular because the 

eigenvalue has been known. In order to ensure the 

existence of solution, the generalized source term 

needs to be orthogonal to the forward flux. Obviously, 

the right hand of Eq. (2) meets the criteria. The 

equation will have infinitely many solutions under 

this circumstance, which can be described as  

 * *

0Γ Γ cΦ    (12) 

The generalized adjoint equation is a neutron 

transport equation with fixed source and the 

eigenvalue has been known. It can be solved referring 

to the iteration scheme of general eigenvalue problem. 

The iteration takes the scheme 

 * *( 1) * *( ) *n nΓ λ Γ S  L F   (13) 

where λ is the known eigenvalue; F* is the adjoint 

fission operator; L* is the operator in M* except for 

fission term and S* is generalized adjoint source.  

Because of the existence of dM/dσ in Eq. (3), the 

generalized adjoint flux is always needed to be 

orthogonal to the fission source in order to avoid 

calculating the derivative of eigenvalue. Therefore, 

the orthogonal condition will be applied during the 

iteration to ensure the orthogonal condition is 

fulfilled and the final iteration scheme is given as 
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The transport solver of NECP-CACTI is based on the 

Method of Characteristic (MOC). Some 

modifications are needed to perform adjoint 

calculation:  

(1) Transpose the matrix of scattering cross-sections; 

(2) Interchange the vector of 
fνΣ  and χ.  

It should be noted that the up-scattering may be 

enhanced because of the transposition of scattering 

matrix, which may reduce the convergence rate. The 

energy-group index can be inverted before the 

iteration is performed. The transport solver can 

perform ajoint calculation after above operations. 

Additional operations are needed to perform 

generalized adjoint calculation:  

(1) The generalized adjoint source is treated as an 

external source;  

(2) The update of fission source complies with the 

following form: 

 

* *

* *f

* *
1eff

,
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g G

g h h h
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Γ ΦνΣ
FS χ Γ Φ

πk Φ Φ

 
  
 
 


F

F
  (15) 

The iteration scheme is similar with that of the 

neutron transport equation with some differences:  

(1) The eigenvalue does not need to be updated. The 

value is fixed to the eigenvalue of the forward 

solution;  

(2) The fission source is updated according to Eq. 

(15).  

Additionally, because the generalized adjoint source 

may be negative, the transport solver needs to 

exclude the limitation of nonnegative flux or source.  

 

2.3 Uncertainty 

The covariance describes the information about the 

uncertainties of nuclear data and the correlations 

between them. The response uncertainties can be 

determined by combining the sensitivity coefficients 

with the covariance using the first-order uncertainty 

propagation formula, which is defined as: 

  rcov TR SCS   (16) 

where rcov(R) is the relative covariance of the 

responses; S is the sensitivity coefficient matrix; and C 

is the relative covariance of nuclear data.  
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3 Numerical verification and analysis  

The verification and analysis are performed based on 

two typical PWR pin-cells which are from NECP 

resonance benchmark[11]. RB3.1 is a UOX case with 

5% 235U-enrichment and RB3.3 is a MOX case with 

7% Pu-enrichment. The calculation is performed 

based on ENDF/B-VII data. The covariance library is 

created using NJOY[12] based on ENDF/B-VII.1 data. 

The direct perturbation(DP) method is treated as the 

reference method in this paper. The DP method can be 

described as Eq. (17):  

 
, 0

d

d
R α

α R α R
S

R α αR


 


  (17) 

where R0 is the unperturbed results; α is a given input 

parameter; and ΔR and Δα are the corresponding 

changing amount. When the perturbations are 

appropriate and the non-linear relationship is not 

strong, this method can obtain accurate results. The 

sensitivity and uncertainty analysis for eigenvalue and 

two-group spatially homogenized cross-sections are 

carried out.  

 

3.1 UOX case 

The integrated sensitivity coefficients are given in 

Fig. 1. The results of GPT-based method(PT) agree 

well with those of DP method(DP). It can be found 

that different response are sensitive to different 

cross-sections. For example, the Σf1 are more 

sensitivity to the fission cross-sections of U235 and 

U238 while the Σs1-1 are more sensitivity to the elastic 

cross-sections.  

Fig. 2 shows the covariance matrix of keff and 

two-group homogenized cross-sections. It can be 

found that the uncertainty of keff is about 0.5% while 

the uncertainties of two-group homogenized 

cross-sections can exceed 1%, including the capture 

cross-sections of both the 1st group and the 2nd group 

and the scattering cross-sections of the 1st group, etc. It 

is interesting to find that the uncertainties of 

fast-group homogenized cross-sections are usually 

larger than those of thermal-group. In order to 

investigate this phenomenon, Fig. 3 shows the five 

most significant uncertainty contributors for different 

responses. 

 

 (a) The sensitivity coefficients of keff                    (b) The sensitivity coefficients of Σt1 

 

 (c) The sensitivity coefficients of vΣf1                  (d) The sensitivity coefficients of Σs1-1 

Fig.1 The comparison of integrated sensitivity-coefficient of some important responses between DP and PT methods for the UOX case. 
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Fig. 2 The covariance matrix of keff and two-group homogenized parameters of the UOX case. 

 

(a) The uncertainty contributors to keff                  (b) The uncertainty contributors to Σc1 

 

(c) The uncertainty contributors to Σs1-2                  (d) The uncertainty contributors to Σc2 

Fig. 3 The five most significant uncertainty sources for some important responses in the UOX case.  

It can be found in Fig. 3 that the uncertainty 

contributors for various responses are different. 

However, the σγ of U238 is important uncertainty 

contributors for most responses. Although the σinel is a 

threshold-energy reaction in fast-group, the 

uncertainty contributions are considerable to most 

responses. This is one of the reasons why the 

fast-group homogenized cross-section uncertainties 

are usually larger. From the numerical results and 

analysis above, it can be found that the σγ and σinel of 

U238 are very significant uncertainty sources. As an 

example, Fig. 4 gives the sensitivity coefficients of Σc1 

to σγ and σinel of U238 and the relative standard 

deviations(RSD) of these cross-sections. It can be seen 

that the uncertainties and the sensitivity coefficients of 

σinel are considerable, causing a significant uncertainty 

contribution. The uncertainties of σγ are also large in 

the whole energy range, while the corresponding 

sensitivity coefficients are considerable. Therefore, it 

is understandable that the uncertainty contributions 

are very large.  
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3.1 MOX case 

The integrated sensitivity coefficients of the MOX 

case are given in Fig. 5. Good agreement can be found 

between the results of GPT-based method and those of 

DP method. Same phenomena can be found as the 

UOX case. In addition, it can be seen that the 

plutonium isotopes show a non-negligible effect in the 

sensitivity analysis.  
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Fig. 4 The relative standard derivation and sensitivity 

coefficients of σγ and σinel of U238 related to Σc1 in the UOX 

case.  

 

 (a) The sensitivity coefficients of keff                          (b) The sensitivity coefficients of Σt1 

 

 (c) The sensitivity coefficients of vΣf1                       (d) The sensitivity coefficients of Σs1-1 

Fi. 5 The comparison of integral sensitivity-coefficient of some important responses between DP and PT methods for the MOX case.  

 

Fig. 6 The covariance matrix of keff and two-group homogenized parameters of the MOX case.  
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Fig. 6 shows the covariance matrix of keff and 

two-group homogenized cross-sections. The results 

are similar with that of UOX problem. The uncertainty 

of keff is about 0.5%, and the uncertainties of the 

fast-group homogenized cross-sections are usually 

larger than those of thermal-group. In order to confirm 

the uncertainty sources of MOX case, Fig. 7 shows the 

five most significant uncertainty contributors for 

different responses. It can be found that the σγ of U238 

is still one of the most significant uncertainty 

contributors, and the σγ of plutonium isotopes become 

important uncertainty sources. For the uncertainties of 

fast-group homogenized cross-sections, the σinel of 

U238 is still the most important contributor. 

 

 

 

 

(a) The uncertainty contributors to keff                        (b) The uncertainty contributors to Σc1 

 

(c) The uncertainty contributors to Σs1-2                  (d) The uncertainty contributors to Σc2 

Fig. 7 The five most significant uncertainty sources for some important responses in the MOX case.  

 

Pu239 is a very important plutonium isotope. As an 

example, Fig. 8 shows the sensitivity coefficients 

of Σc1 and Σc1 to σγ and σinel of Pu239 and the RSD of 

these cross-sections. It can be found the inelastic 

cross-sections have a considerable uncertainty. 

However, the sensitivity coefficients are negligibly 

small. Therefore, the uncertainty contribution is not 

as big as U238. The uncertainties of σγ are large, 

especially in the fast-energy range. However, 

because of the small sensitivity coefficients of Σc1, 

the uncertainty contribution of σγ to Σc1 is negligible. 

On the other hand, the Σc2 are very sensitive to the 

thermal-group cross-sections, therefore σγ has an 

important uncertainty contribution to the 

uncertainty of Σc2.  
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Fig. 8 The relative standard derivation and sensitivity 

coefficients of σγ and σinel of Pu239 relative to Σc1 and Σc2 in 

the MOX case.   

 

4 Summary and Conclusions 
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The mothed to perform the sensitivity and uncertainty 

analysis for few-group homogenized cross-section is 

studied in this paper based on generalized 

perturbation theory. A new method to take the 

implicit sensitivity into account is proposed with 

subgroup method being used for resonance 

calculation. A code name NECP-COLEUS was 

developed based on the platform of lattice-physics 

code NECP-CACTI. A UOX case and a MOX case 

are calculated and analyzed. The sensitivity 

coefficients results agree well with the results given 

by the direct perturbation method. The keff and 

few-group homogenized cross-section uncertainties 

are calculated based on the ENDF/B-VII.1 

covariance.  

The numerical results show that the σγ and σinel of 

U238 are usually significant uncertainty contributors 

for both UOX and MOX problems. In the MOX case, 

the cross-sections of plutonium isotopes are also 

important uncertainty contributors, especially the 

capture cross-sections. The precision of current 

ENDF/B-VII.1 data will lead to considerable 

uncertainties for lattice calculation. The largest 

uncertainties of few-group homogenized 

cross-sections exceed 1%.  

Future work should perform core-calculation 

sensitivity and uncertainty analysis based on the 

sensitivity and uncertainty results of few-group 

spatially homogenized cross-sections.  
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