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ABSTRACT
In the framework of two-step method of reactor core calculation, few-group homogenized
cross sections generated by lattice-physics calculations are key input parameters for the
three-dimensional full-core calculation. Conventional method for few-group cross-sections
sensitivity and uncertainty (S&U) analysis related to the nuclear data was performed based
on the effective self-shielding cross sections instead of the continuous-energy cross sections,
which means resonance self-shielding effect (implicit effect) is neglected. Furthermore, the
multi-group covariance data is generated from the continuous-energy cross sections. Therefore,
in order to perform S&U analysis with respect to the continuous-energy cross sections for both
accuracy and consistency, a hybrid method is proposed in this paper. The subgroup-parameter
sensitivity-coefficients are calculated based on the direct perturbation (DP) method. The
sensitivity-coefficients of the effective self-shielding cross sections and the responses (keff and
few-group homogenized cross sections) are calculated based on the generalized perturbation
theory (GPT). A boiling water reactor (BWR) pin-cell problem under different power conditions is
calculated and analyzed. The numerical results reveal that the proposed hybridmethod improves
the sensitivity-coefficients of eigenvalue and few-group homogenized cross sections. The tem-
perature effects on the sensitivity-coefficients are demonstrated and the uncertainties are
analyzed.

1. Introduction

Response sensitivity and uncertainty (S&U) analysis
with respect to fundamental nuclear data is an impor-
tant aspect in the framework of reactor numerical cal-
culation. There are many applications based on S&U
analysis. In the reactor design and safety analysis, design
margin can be determined appropriately based on the
S&U analysis, and additional efforts can also be found
in order to reduce the uncertainties [1]. In the target
accuracy assessment, when uncertainties cannot meet
the safety parameter accuracy requirement, nuclear
data uncertainties that need to be improved can be
determined to solve a minimum problem based on
the sensitivity-coefficients [2]. Nuclear-data adjustment
is to minimize the uncertainties of safety parameters
based on the integral experimental data and S&U anal-
ysis results [3]. S&U research has been receiving more
andmore attentions because of such significant applica-
tions. Accurate S&U evaluation is necessary under this
circumstance.

In the conventional reactor physics ‘two-step’
scheme calculation, lattice-physics calculation is per-
formed followed by core diffusion calculation. The
few-group homogenized cross sections are the outputs
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of the lattice-physics calculation as well as the inputs of
the core calculation. The uncertainties of fundamental
nuclear data will be propagated to the core calculation
results through few-group homogenized cross sections.
Consequently, quantifying the uncertainties of few-
group homogenized cross sections is a necessary step
for the core calculation S&U analysis.

Conventional method for nuclear-data sensitivity
analysis usually neglects resonance self-shielding effect
[4]. However, resonance self-shielding is an important
phenomenon in thermal reactors, which leads to the
fact that implicit sensitivity arising from resonance cal-
culation plays an important role in the S&U analysis
of lattice-physic calculation [5–6]. In order to take into
account the resonance self-shielding effect to improve
the accuracy, the sensitivity analysis should be per-
formed based on the continuous-energy cross sections
rather than the effective self-shielding cross sections.
On the other hand, nuclear-data covariance process-
ing code, such as NJOY [7], calculates the covariance
of multi-group cross sections at infinite dilution from
the continuous-energy cross sections, instead of covari-
ance of the effective self-shielding cross sections. From
this perspective, it is appropriate to perform sensitivity
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analysis with respect to the continuous-energy counter-
parts of the multi-group cross sections to keep the con-
sistency. Moreover, further analysis about the implicit
effects on more responses beside the multiplication fac-
tor should be performed.

The subgroup method has been widely used for res-
onance calculation [8–9]. The subgroup parameters are
calculated based on resonance cross-sectional tables or
resonance integral tables, which are generated from
continuous-energy cross sections off-line. The pertur-
bation of continuous-energy cross sections will implic-
itly affect the final responses through the subgroup res-
onance calculation. Unlike the method to assess such
implicit effect based on the conventional resonance cal-
culated method [6,10], two problems will be encoun-
teredwhen the subgroupmethod is used. The first one is
how to assess the effects on subgroup parameters when
the continuous-energy cross sections are perturbed.
The second one is how to assess the effects on the effec-
tive self-shielding cross sections when the subgroup
parameters are perturbed. After these two problems are
solved, the response sensitivity-coefficients with respect
to the continuous-energy cross sections can be deter-
mined.

In our previous work [11], the implicit sensitivity-
analysis method was developed for non-resonance
nuclides, and only the eigenvalue implicit sensitivity-
coefficients were studied. Though previous work
demonstrated that the implicit sensitivity had a signif-
icant effect on the eigenvalue sensitivity-coefficients,
more responses such as few-group homogenized
cross sections were not investigated. Moreover, when
the resonance nuclides are taken into account, the
sensitivity-coefficient calculation method is not
proposed when the continuous-energy cross sec-
tions are considered as the perturbation sources. In
order to investigate the implicit effect on the few-
group homogenized cross sections, and perform
S&U analysis with respect to the continuous-energy
cross sections with subgroup resonance calculation
method being used for both accuracy and consis-
tency, a new hybrid method is proposed in this paper.
The subgroup-parameter sensitivity-coefficients with
respect to the continuous-energy cross sections are cal-
culated based on the direct perturbation (DP) method.
The sensitivity-coefficients of effective self-shielding
cross sections and the responses (keff and few-group
homogenized cross sections) S&U analysis are calcu-
lated based on the generalized perturbation theory
(GPT).

This paper is organized as follows. Theoretical
models of this work are described in Section 2.
The calculation flow chart is given in Section 3.
Section 4 gives the verification and analysis based
on a BWR fuel pin-cell under different power condi-
tions. Finally, Section 5 summarizes and concludes the
work.

2. Theoretical models

2.1. Sensitivity calculation

... Sensitivity calculation for assembly
homogenized few-group cross sections
Sensitivity-analysismethod based on theGPT is proven
to be very efficient when the amount of input param-
eters is far larger than that of the responses [12]. The
method is well suitable for the sensitivity analysis of the
reactor integral parameter R which has the following
form:

R ≡ 〈�∗H1�〉
〈�∗H2�〉 (1)

where H1 and H2 are the operators related to nuclear
cross sections; � is the neutron angular flux and
�∗ is the adjoint neutron angular flux, which are
the eigenvector solution of the neutron transport
equation and adjoint neutron transport equation,
respectively, which are given by Equations (2) and
(3); 〈〉 denotes integration over appropriate phase
space.

� · ∇� + �t (r,E)�

−
∫ ∞

0
dE′

∫
�′

�s
(
r;E′,�′ → E,�

)
�(r,E′,�′)d�′

− λ
χ(E)

4π

∫ ∞

0
dE′

∫
�′

ν�f (r,E′)�(r,E′,�′)d�′ = 0

(2)

−� · ∇�∗ + �t (r,E)�∗

−
∫ ∞

0
dE′

∫
�′

�s
(
r;E,� → E′,�′) �∗(r,E′,�′)d�′

−λ
ν�f (r,E)

4π

∫ ∞

0
dE′

∫
�′

χ(E′)�∗(r,E′,�′)d�′ = 0

(3)

The operator forms of Equations (2) and (3) are given
by Equations (4) and (5).

(L − λF ) � = M� = 0 (4)

(
L∗ − λF∗) �∗ = M∗�∗ = 0 (5)

where F is the fission operator; L is the operator
represents other terms; M is the Boltzmann trans-
port operator; λ = 1/keff is the minimum eigen-
value. F*, L*, and M* are the corresponding adjoint
operators.

The expression of the relative sensitivity-coefficient
can be given by Equation (6) according to the defini-
tion:

S = dR/R
dα/α
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

where H∗
1 and H∗

2 are the adjoint operators of H1 and
H2 correspondingly.

It can be found that the derivative of the flux
needs to be calculated for each nuclear cross section
to determine the sensitivity-coefficient, which leads to
high computation cost. In order to avoid the calcula-
tion of the term d�

dα , a generalized adjoint equation
should be established given by Equation (7) according
to GPT:

M∗�∗ = H∗
1�

∗

〈�∗H1�〉 − H∗
2�

∗

〈�∗H2�〉 (7)

The second-term of the right hand of Equation (6)
can be calculated alternatively by Equation (8):

α

〈(
H∗

1�
∗

〈�∗H1�〉 − H∗
2�

∗

〈�∗H2�〉
)
d�
dα

〉
= −α

〈
�∗,

dM
dα

�

〉

(8)

The third-term of the right hand of Equation (6) can
be calculated with the similar method. With the trans-
formation of the GPT-based method, the calculation of
derivative of the flux and adjoint flux can be avoided.
The sensitivity-coefficients can be obtainedwith respect
to all nuclear cross sections once the corresponding
adjoint flux is obtained. Therefore, this method is effi-
cient for sensitivity calculation.

WhenR is a given few-group homogenized cross sec-
tion of lattice-physics calculation, the expression is

�̄x,h = 〈�x�〉
〈�〉 (9)

where x is the cross-sectional type; h is the group
index of few-group cross sections; �̄x,h is the few-
group cross sections;�x is the multi-groupmacro cross
sections.

The corresponding generalized adjoint equation is
given as follows according to the above derivation
[13–14]:

M∗�∗= �x

〈�x�〉 − 1
〈�〉 (10)

Then, the relative sensitivity-coefficients of few-
group homogenized cross sections tomulti-group cross
sections can be evaluated as following:

SR,σ = dR/R
dσ/σ

= σ
〈(d�x/dσ )�〉

〈�x�〉 − σ

〈
�∗ dM

dσ
�

〉

(11)

where σ is a specific multi-group cross section. R will
represent arbitrary response which has the Equation (1)
form hereinafter for simplification.

It should be noted that the sensitivity-coefficients
obtained above are direct effects of the multi-group
cross sections on the responses during the solution
of multi-group neutron transport equation. However,
resonance calculation is necessary before multi-group
neutron transport calculation is performed. When
continuous-energy cross sections are treated as the
perturbation sources, the perturbation will influence
the responses through resonance calculation indirectly,
which is called implicit sensitivity [6]. Therefore, the
total sensitivity-coefficient of the response R to the
continuous-energy cross section can be expressed as
follows:

Stot
R,α

(k)
ω,Eg

= α
(k)
ω,Eg

R
dR

dα(k)
ω,Eg

= α
(k)
ω,Eg

R

∑
x,g′

∂R
∂σ

(k)
x,g′

dσ (k)
x,g′

dα(k)
ω,Eg

+ α
(k)
ω,Eg

R

∑
j, y, h
j 
= k

∂R

∂σ
( j)
y,h

∑
x,g′

∂σ
( j)
y,h

∂σ
(k)
x,g′

dσ (k)
x,g′

dα(k)
ω,Eg

=
∑
x,g′

Sexp
R,σ

(k)
x,g′
S

σ
(k)
x,g′ ,α

(k)
ω,Eg

+
∑
j, y, h
j 
= k

Sexp
R,σ

( j)
y,h

∑
x,g′

S
σ

( j)
y,h ,σ

(k)
x,g′
S

σ
(k)
x,g′ ,α

(k)
ω,Eg

(12)

where x, y, and ω are reaction indexes; k and j are
nuclide indexes; g’, g, and h are group indexes; α

is the continuous-energy cross section; σ is the cor-
responding multi-group cross section; α with sub-
script Egmeans the continuous-energy cross section in
energy range of the gth energy group;StotR,α is called total
sensitivity-coefficient; SexpR,σ is called explicit sensitivity-
coefficient of R to the multi-group cross section σ ;
S

σ
( j)
y,h ,σ

(k)
x,g′

is the sensitivity-coefficient of the effective
self-shielding cross section of nuclide j to the multi-
group cross section σ

(k)
x,g′ , and Sσ

(k)
x,g′ ,α

(k)
ω,Eg

is the sensitivity-

coefficient of the multi-group cross section σ
(k)
x,g′ to the

continuous-energy cross section α
(k)
ω,Eg.

Assuming that the effect of the continuous-energy
cross section α

(k)
ω,Eg on the multi-group cross sections of

other energy groups is negligibly small, Equation (12)
can be simplified as

Stot
R,α

(k)
ω,Eg

=
∑
x

Sexp
R,σ

(k)
x,g
S

σ
(k)
x,g ,α

(k)
ω,Eg

+
∑
j, y, h
j 
= k

Sexp
R,σ

( j)
y,h

∑
x

S
σ

( j)
y,h ,σ

(k)
x,g
S

σ
(k)
x,g ,α

(k)
ω,Eg

(13)
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For resonance nuclides, the relationship between
σ

(k)
x,g and α

(k)
ω,Eg is complicated because of the self-

shielding phenomenon. S
σ

(k)
x,g ,α

(k)
ω,Eg

needs to be calculated,
and S

σ
( j)
y,h ,σ

(k)
x,g

is also needed when resonance nuclide
k participates in the resonance calculation process of
other resonance nuclide j. However, for non-resonance
nuclides, the multi-group cross section is always sup-
posed to have a linear relationship with its continuous-
energy cross section, because the weighting flux used
to condense multi-group cross section is independent
of the cross sections. Consequently, S

σ
(k)
x,g ,α

(k)
ω,Eg

is equal to
1.0 if reaction x is the same as reaction ω. If the self-
shielding impact is neglected, the sensitivity-coefficient
can be expressed as

Stot
R,α

(k)
ω,Eg

= Sexp
R,σ

(k)
ω,g

(14)

which can be calculated by Equation (11) directly.
According to the analysis above, the implicit sensitiv-

ity is indirectly aroused because of the resonance calcu-
lation. Consequently, it can be seen from Equation (13)
that the key point to consider the implicit sensitivity is
to obtain two terms. One is the sensitivity-coefficient
of effective self-shielding cross section with respect to
the continuous-energy cross section, S

σ
(k)
x,g ,α

(k)
x,Eg

, and the
other one is the sensitivity-coefficient of effective self-
shielding cross section with respect to that of other
nuclide, S

σ
( j)
y,h ,σ

(k)
x,g
.

... Sensitivity calculation for effective
self-shielding cross sections
The widely used subgroup resonance calculation
method is applied in this paper, and the following
derivation will be performed based on this method.
Resonance cross section is divided into several bands
(subgroups) from its minimum value to its maximum
value in the subgroup resonance calculation method,
which is shown in Figure 1 [9]. Each subgroup has the
corresponding subgroup cross section and probabil-
ity (collectively called subgroup parameters) defined
as

σx,g,i =
∫
�Eg,i σx (E) φ (E) dE∫

�Eg,i φ (E) dE
(15)

pg,i = �Eg,i
�Eg

(16)

where the subscript i stands for subgroup index; �Eg is
the energy width of group g; �Eg,i is the energy range
of the ith subgroup cross section, which is defined as
�Eg,i ∈ {E|σg,i < σ (E) ≤ σg,i+1}.

For the subgroup resonance calculation method,
the resonance cross-sectional tables are built based on
the continuous-energy cross sections. Subsequently, the

subgroup parameters are calculated based on the reso-
nance cross-sectional tables. And then the effective self-
shielding cross section is defined as

σx,g (r) =

∑
i=1,I

σx,g,i (r) φg,i (r)
∑
i=1,I

φg,i (r)
(17)

where I is the number of subgroup, and the weight-
ing function of each subgroup, φg,i(r), is the solu-
tion of subgroup transport equation, which is the
integration of the continuous-energy Boltzmann
transport equation over a subgroup, as defined as
follows:

� · ∇φg,i(r, �) + �t,g,i(r)φg,i(r, �) = Qg,i(r, �)

(18)

where the subgroup total cross section is given as

�t,g,i = Naσ
a
t,g,i +

∑
b
=a

Nbσ
b
t,g (19)

where a indicates the resonance nuclide that is per-
formed resonance calculation currently, and b indicates
the other nuclides, and Na and Nb are the correspond-
ing nuclide density. It can be found that for nuclide b,
the subgroup cross sections for each band are just the
multi-group cross sections.

In this study, Qg,i is equal to λpi�p based on inter-
mediate resonance approximation. λ is the Goldstein–
Cohen factor and �p is the potential scattering cross
section.

The corresponding operator form of Equation (18)
is

Lgφg = Qg (20)

The expression of Equation (17) is analogous to
Equation (1), so it is easy to apply the GPT-based
method to obtain effective self-shielding cross-sectional
sensitivity-coefficients.

First, the generalized adjoint subgroup transport
equation should be built

L∗
g�

∗
g = Q∗

g (21)

where L∗
g is the adjoint operator of Lg; Q∗

g is the gener-
alized adjoint source:

Q∗
g,i = σx,g,i∑

i=1,I

∫
V

∫
�

σx,g,iφg,i(r, �)d�dV

− 1∑
i=1,I

∫
V

∫
�

φg,i(r, �)d�dV
(22)

Then, the sensitivity-coefficient of the effective self-
shielding cross section to the continuous-energy cross
section can be expressed as follows according to the
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Figure . Definition of subgroups in a broad energy group.

analogous Equation (11).

Sσx,g,α = α

⎛
⎜⎝

∑
i=1,I

dσx,g,i

dα φg,i

∑
i=1,I

σx,g,iφg,i
−

〈
�∗
x,g,

(
dL
dα

φg − dQg

dα

)〉⎞⎟⎠

=

∑
i=1,I

σx,g,iSσx,g,i,αφg,i

∑
i=1,I

σx,g,iφg,i

+
∑
i=1,I

∫
V

∫
�

�∗
x,g,i

(
Qg,iSQg,i,α − α

dL
dα

φg,i

)
d�dV

(23)

where Sσx,g,i,α is the sensitivity-coefficient of the sub-
group cross section to the continuous-energy cross sec-
tion; SQg,i,α is the sensitivity-coefficient of the source
term to the continuous-energy cross section. Because
the source term is linearly dependent on the subgroup
probability, SQg,i,α is equal to Spg,i,α .

There are two terms on the right side of Equation
(23). The first one is the direct term, which accounts
for the effect of the continuous-energy cross section
α on the subgroup parameters directly. Only when α

belongs to the same resonance nuclide as σx,g will the
direct term be non-zero. The second one is the indi-
rect term, which accounts for the effect on the effec-
tive self-shielding multi-group cross section due to

the perturbation of weighting function (subgroup flux)
caused by the change in continuous-energy cross sec-
tion α. It should be noted that it is different compared
to the conventional resonance calculation method.
First, the subgroup parameters are used in the solv-
ing process of weighting flux. Therefore, the sensitivity-
coefficients of effective self-shielding cross sections to
subgroup parameters will be calculated by GPT first.
And then the sensitivity-coefficients of effective self-
shielding cross sections to continuous-energy cross sec-
tions can be calculated by combining the subgroup-
parameter sensitivity-coefficients. Second, for sub-
group resonance calculation method, the effective self-
shielding cross sections are region-dependent; there-
fore, the sensitivity-coefficients should be solved for
each resonance region.

When α is not the cross section of the resonance
nuclide involved in the current resonance calcula-
tion, the corresponding multi-group cross sections will
participate in the resonance calculation according to
Equation (19). Therefore, the sensitivity-coefficient of
the effective self-shielding cross section with respect to
the multi-group cross section can be obtained in this
process, which are corresponding to the termS

σ
(k)
x,g ,σ

( j)
y,h

in
Equation (13) and can be found in the previous study
[11].
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When α is the cross section of the resonance nuclide
involved in the current resonance calculation, the
sensitivity-coefficient of the subgroup parameter to the
continuous-energy cross section, Sσx,g,i,α as shown in
Equation (23), needs to be calculated.

... Sensitivity calculation for subgroup parameter
Several methods for subgroup-parameter generation
have been studied and applied [15–16]. The fitting
method [17–18] is employed for subgroup-parameter
generation in this paper. The calculation is based on
the resonance cross-sectional tables, which include the
multi-group resonance cross sections under specific
background cross section given as

σx,g (σb) =
∫
�Eg σx (E) φ (E, σb) dE∫

�Eg φ (E, σb) dE
(24)

where �Eg is the energy range of the gth group, and σb
is the background cross section. φ(E, σb) is the weight-
ing flux which is obtained with a continuous-energy
method or a hyper-fine energy-group method.

The perturbation of the continuous-energy cross
sections (point-wise cross sections) will affect both
the cross sections and the weighting flux. As a result,
the resonance cross-sectional tables and the subgroup
parameters will be affected subsequently. The DP
method can be used to obtain subgroup-parameter
sensitivity-coefficients by perturbing the continuous-
energy cross sections before the generation of reso-
nance cross-sectional tables. Linear perturbation may
be used approximately for the generation of the res-
onance cross-sectional tables if the weighting flux is
deemed intact. The perturbed multi-group resonance
cross section can be described as Equation (25) under
this assumption:

σ ′
x,g (σb) =

∫
�Eg (1 + δx) σx (E) φ (E, σb) dE∫

�Eg φ (E, σb) dE

≈ (1 + δx) σx,g (σb) (25)

where δx is relative perturbation percent.
However, linear approximation may result in large

errors when the weighting flux is closely related to the
perturbation. The narrow resonance (NR) approxima-
tion was proposed in some previous studies [19–20].
The multi-group resonance cross section can be writ-
ten as Equation (26) when the weighting flux is treated
through the NR approximation:

σx,g (σb) =
∫
�Eg

σx(E)

σt(E)+σb

1
EdE∫

�Eg
1

σt(E)+σb

1
EdE

=
∫
�Eμ

σx(μ)

σt(μ)+σb
dμ∫

�Eμ

1
σt(μ)+σb

dμ
(26)

When the continuous-energy cross sections have a
relative perturbation of δx, the perturbed multi-group

resonance cross section can be given as

σ ′
x,g (σb) =

∫
�Eμ

(1+δx )σx(μ)

(1+δt )σt(μ)+σb
dμ∫

�Eμ

1
(1+δt )σt(μ)+σb

dμ

= (1 + δx)

∫
�Eμ

σx(μ)

σt(μ)+σb/(1+δt )
dμ∫

�Eμ

1
σt(μ)+σb/(1+δt )

dμ

= (1 + δx) σx,g
(
σ ′
b
)

(27)

whereσ ′
b = σb/(1 + δt ) and δt is the relative perturba-

tion of σt(μ) for cross-sectional self-consistency when
σx(μ) is perturbed. Equation (27) indicates that the per-
turbed multi-group resonance cross section obtained
with the NR approximation is smaller than the value
obtained with linear perturbation in case of δt > 0 and
δx > 0 because the value of σ ′

b is smaller than that of
σb, which leads to the fact that the value of σx,g(σ

′
b) is

smaller than that of σx,g(σb). And when δt < 0 and δx
< 0, the situation is opposite.

This method, however, is valid only when the NR
approximation is well satisfied. Therefore, a more
accurate method is proposed in this paper as fol-
lows. The hyper-fine energy-group method is used to
solve a neutron slowing-down equation for an infinite-
homogeneousmedium to generate the resonance cross-
sectional tables in this study. The neutron slowing-
down equation for an infinite-homogeneousmedium is
defined as [21]

[�a (E) + �s (E)]φ (E) = Qs (28)

The point-wise cross sections within a specified
energy group can be perturbed in the equation-solving
process to capture the effect on the weighting flux
to obtain the accurate perturbation of multi-group
resonance cross sections. Then, the DP method can
be applied to obtain the resonance cross-sectional
sensitivity-coefficients with respect to the point-wise
cross sections, which can be described as Equation
(29):

SR,β = β

R
dR
dβ

= β

R0

�R
�β

(29)

whereR0 is the unperturbed response; β is a given input
parameter; and �R and �β are the corresponding per-
turbed amount. In this specific case, R is the resonance
cross section of a specified energy group and β is the
point-wise cross section within this energy group.

It should be pointed out that an assumption is made
that the continuous-energy cross sections (point-wise
cross sections) are perturbed uniformly within the
energy group to be perturbed. Uniform perturbation
can obtain the resonance cross-sectional sensitivity-
coefficients to all point-wise cross sections in this
energy group and avoid the point-by-point calculation
of the sensitivity-coefficients. Therefore, the resonance
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cross-section sensitivity-coefficients describe the rela-
tive perturbation of resonance multi-group cross sec-
tions with respect to the point-wise cross sections that
are perturbed uniformly in the same energy group.

After the resonance cross-section sensitivity-
coefficients are obtained, the perturbed subgroup
parameters can be calculated subsequently. The DP
method can be adopted to calculate the subgroup-
parameter sensitivity-coefficients with Equation (29).

2.2. Uncertainty calculation

The first moments of nuclear-data probability distri-
butions were given in the early versions of evaluated
nuclear-data libraries. With an increasing demand on
the S&U analysis, the additional second moments of
nuclear-data probability distributions were included
starting from ENDF/B-IV [7]. The second moments,
also called covariances, describe the information about
the uncertainties of nuclear data and the correlations
between them. The response uncertainties can be deter-
mined by combining the sensitivity-coefficients with
the covariance. Suppose there is an approximate lin-
ear relationship between the response and the nuclear
data:

R ≈ R0 +
∑
n1

dR
dαn1

δαn1 (30)

The covariance between responses Rm and Rn can be
computed using the identity:

cov (Rm,Rn) ≈
NT∑
n1=1

NT∑
n2=1

(
dRm

dαn1

)
cov

(
αn1 , αn2

) (
dRn

dαn2

)

(31)

wherem and n are response indexes; cov(αn1, αn2 )is the
covariance between input parameters αn1 and αn2 . It is
called the first-order uncertainty propagation formula.

Dividing the two sides of Equation (31) by the square
of R, the first-order uncertainty propagation formula
can be expressed in operator form:

rcov (R) ≈ SCST (32)

where rcov(R) is the relative covariance of the
responses; S is the relative sensitivity-coefficientmatrix;
and C is the relative covariance of nuclear data.

3. Computational procedure

Based on the method proposed above, a code name
COLEUS has been developed. The calculation flow
chart is given in Figure 2. First, the resonance cross-
sectional sensitivity-coefficients are calculated based
on the DP method off-line and the data are saved
in the form of database for subsequent use. Sec-
ond, in the calculation process of subgroup param-
eters, the DP method is applied to calculate the

Figure . The calculation flowchart for COLEUS.

subgroup-parameter sensitivity-coefficients. Third, the
sensitivity-coefficients of the effective self-shielding
cross section are calculated during the iteration pro-
cess of subgroup resonance calculation. Fourth, a gen-
eralized adjoint neutron transport equation is solved
for each type of response and the corresponding
sensitivity-coefficients can be calculated. Finally, the
uncertainty analysis is performed based on the first-
order uncertainty propagation formula.

4. Numerical results and discussions

Verification has been performed for COLEUS based
on a BWR pin-cell case named PB-2 under differ-
ent power conditions from the UAM benchmark [1].
One is under hot zero power (HZP) condition and
the other one is under hot full power (HFP) condi-
tion. The calculations are carried out using the WIMS-
D 69-group library based on ENDF/B-VII data, and
the resonance energy groups are from the 15th group
(5530.0–9118.0 eV) to the 27th group (4.0–9.877 eV).
The covariance data library is created using NJOY [7]
based on ENDF/B-VII.1 data. The S&U analysis for
eigenvalue and two-group spatially homogenized cross
sections are performed. The energy range of the first
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Figure . The sensitivity-coefficients of resonance cross sections with respect to continuous-energy cross sections at different back-
ground cross sections.

group (fast group) is from 0.625 eV to 1.0× 107 eV and
the second group (thermal group) is from 1.0× 10-5 eV
to 0.625 eV.

4.1. Resonance cross-sectional
sensitivity-coefficients

As described in Section 2, the DP method based on
the hyper-fine energy-group method instead of the
NR approximation and linear approximation is applied
to obtain the resonance cross-sectional sensitivity-
coefficients. In order to investigate the improve-
ment, the comparisons of resonance cross-sectional
sensitivity-coefficients calculated with three different
methods at different background cross sections are
given in Figure 3.

As shown in Figure 3, the sensitivity-coefficients of
NR approximation and linear approximation have a
good agreement with that of hyper-fine method at high
energy groups (e.g. the 15th group (5530.0–9118.0 eV)
and the 18th group (1425.1–2239.4 eV)), because the
resonance peak at high energy can be well described
by NR approximation, and linear approximation is also
acceptable. On the other hand, good agreement can be
also found at large background cross sections because
the weighting flux will be affected decreasingly along
with the increase of background cross section. How-
ever, large differences can be found within low-energy
range (the 27th group (4.0–9.877 eV)) where the NR
approximation is not well satisfied. The NR approxima-
tion or linear approximation will overestimate the res-
onance cross-sectional sensitivity-coefficients. There-
fore, the sensitivity-coefficients can be improved by the
proposed method.

4.2. Response sensitivity-coefficient verification
and analysis

The DP method is considered as the reference method
for response sensitivity-coefficient verification for the

GPT-based method (GPT) used in this study. Because
the implicit effect mainly occurs in the resonance
energy-groups, the resonance energy-group region-
integrated relative total sensitivity-coefficients of some
important responses calculated by those two methods
are given and compared in Figures 4 and 5, and the
explicit sensitivity-coefficients are given and compared
in Figures 6 and 7. The subscript ‘1’ stands for the first
group (fast group) and ‘1-2’ means the first to second
group scattering. It can be found in the figures that the
results of theGPT-basedmethod agreewell with the ref-
erence results. It proves the correctness of the proposed
method.

Figures 8 and 9 give the comparisons of total
sensitivity-coefficients and explicit sensitivity-
coefficients under HZP and HFP conditions. It can
be found that the proposed method can improve the
response sensitivity-coefficients in different extents.
For non-resonance nuclides such as 1H, the positive
perturbation of cross sections will always increase the
resonance cross sections because of the fact that the
resonance cross sections are monotonously increasing
with the background cross-sectional increase. This phe-
nomenon will lead to the negative implicit sensitivity-
coefficients of keff in the 238U-dominated problem,
where the resonance absorption is the dominated reso-
nance reaction. Therefore, it can be found in Figure 8(a)
that the explicit sensitivity-coefficients are always
larger than total sensitivity-coefficients, which means
that the explicit sensitivity-coefficients will overesti-
mate the keff sensitivity-coefficients to non-resonance
nuclides in such problems. Things are more compli-
cated in the few-group parameters. First, the positive
perturbation of σ elas of 1H will decrease the neutron in
this energy group, which may decrease the correspond-
ing few-group cross sections. On the other hand, the
perturbation will increase the cross section itself and
the resonance cross sections, which may increase the
corresponding few-group cross sections. Consequently,
the few-group cross-sectional sensitivity-coefficients
are determined by those two terms. Positive implicit
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Figure . The total sensitivity-coefficients of some important responses calculated by DP and GPT methods for PB- HZP case.

Figure . The total sensitivity-coefficients of some important responses calculated by DP and GPT methods for PB- HFP case.
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Figure . The explicit sensitivity-coefficients of some important responses calculated by DP and GPT methods for PB- HZP case.

Figure . The explicit sensitivity-coefficients of some important responses calculated by DP and GPT methods for PB- HFP case.
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Figure . The comparison of sensitivity-coefficients for σ elas of
H.

Figure . The comparison of sensitivity-coefficients for σγ of U.
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Figure . The relative covariance matrix and relative standard deviation of responses of PB- HZP case.

sensitivity can be found in Figure 8(b) while negative
implicit sensitivity can be found in Figure 8(c,d) on the
contrary.

For resonance nuclides such as 238U, the sensitivity-
coefficients are also improved considerably, especially
in the low-energy groups. Because the explicit sen-
sitivity is approximated equivalent to the linear per-
turbation of continuous-energy cross section, which
can be deduced from Equation (12) if the second-
term is deemed small, the resonance cross-sectional
sensitivity-coefficientswill be overestimated in this situ-
ation as demonstrated in Section 4.1. Therefore, smaller
response total sensitivity-coefficients (absolute value)
can be found in Figure 9 (a-d) for this reason if the pro-
posed method is used.

4.3. Uncertainty analysis

The relative covariance matrices and relative standard
deviations of different responses of PB-2 HZP case
and HFP case are presented in Figures 10 and 11. It
can be seen that the eigenvalue uncertainties are about
0.5%–0.6% for both the HZP case and the HFP case.
Some uncertainties of few-group homogenized cross
sections are more than 1%, such as the capture cross
sections of both the first group and the second group

and the scattering cross sections of the first group.
Considerable covariance can be found between dif-
ferent few-group homogenized cross sections. This
phenomenon is caused by the fact that the different
responses are impacted by the same nuclear data in the
lattice-physics calculation. Therefore, it is necessary to
take the covariance into account in the core S&U anal-
ysis.

In addition, interesting results can also be found.
First, the fast-group homogenized cross-sectional
uncertainties are usually larger than those of thermal
group. Second, the uncertainties of the HFP case are
larger than those of the HZP case generally. In order to
investigate the reasons, the five most significant uncer-
tainty contributors are listed in Tables 1–4 for some
important responses. It can be found that uncertainty
contributors vary for different responses. However, the
σγ and σ inel of 238U are very important uncertainty
contributors for most responses and become more
important in the HFP case. Although the inelastic
scattering reaction is a threshold energy reaction in
fast-group, the uncertainty contributions are consider-
able to most responses. This is one of the reasons why
the fast-group homogenized cross-sectional uncertain-
ties are usually larger.

As an example, Figure 12 gives the sensitivity-
coefficients of �s1-2 to σγ and σ inel of 238U and the

Figure . The relative covariance matrix and relative standard deviation of responses of PB- HFP case.
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Table . The five most significant uncertainty contributors for keff in the PB- HZP and
PB- HFP cases.

PB- HZP PB- HFP

Cross–sectional pair Contribution to�R/R(%) Cross-sectional pair Contribution to�R/R(%)

U(σ
γ
–σ

γ
) . U(σ

γ
–σ

γ
) .

U(σ
γ
–σ

γ
) . U(σ inel–σ inel) .

H(σ
γ
–σ

γ
) . U(σ

γ
–σ

γ
) .

U(σ inel–σ inel) . U(ν–ν) .
U(ν–ν) . U(ν–ν) .

Figure . The relative standard derivation and sensitivity-
coefficients of σγ and σ inel.

relative standard deviations of these cross sections. It
can be seen that the uncertainties and the sensitivity-
coefficients of inelastic scattering reaction are consider-
able, causing a significant uncertainty contribution.

The sensitivity-coefficients in HFP case are larger
than these in HZP case within the fast energy range.
The main reason is the temperature effect. HFP leads to

a 40% coolant void in BWR, causing a hardening of the
neutron-flux spectrum relative to HZP. The sensitivity-
coefficients of fast energy groups will increase conse-
quently as shown in Figure 12, causing a larger uncer-
tainty contribution concomitantly. This phenomenon is
especially reflected in the behaviors of σ inel of 238U for
all responses. It should be pointed out that the inelas-
tic scattering reaction is a threshold reaction, so the
sensitivity-coefficients and standard deviation value are
zero below the threshold energy (4.085× 104 eV). Con-
sequently, the relative standard deviation of σ inel is cut-
off in the logarithmic coordinate in Figure 12.

5. Summaries and conclusions

A new hybrid method is proposed to perform the
S&U analysis of the lattice-physics calculation based
on continuous-energy cross sections for eigenvalue and
few-group homogenized cross sections. The sensitivity
analysis can be performed for responses with respect
to continuous-energy cross sections to take the implicit
effect into account with the subgroup resonance calcu-
lation method.

Table . The five most significant uncertainty contributors �cin the PB- HZP and PB-
HFP cases.

PB- HZP PB- HFP

Cross-sectional pair Contribution to�R/R(%) Cross-sectional pair Contribution to�R/R(%)

U(σ inel–σ inel) . U(σ inel–σ inel) .
U(σ

γ
–σ

γ
) . U(σ

γ
–σ

γ
) .

H(σ elas–σ elas) . H(σ elas–σ elas) .
U(σ

γ
–σ

γ
) . U(σ

γ
–σ

γ
) .

O(σ elas–σ elas) . O(σ elas–σ elas) .

Table . The fivemost significant uncertainty contributorsυ�f in the PB- HZP and PB-
HFP cases.

PB- HZP PB- HFP

Cross-sectional pair Contribution to�R/R(%) Cross-sectional pair Contribution to�R/R(%)

U(σ inel–σ inel) . U(σ inel–σ inel) .
U(ν–ν) . U(ν–ν) .
U(σ f–σ f) . U(σ f–σ f) .
U(σ f–σ f) . U(σ f–σ f) .
U(ν–ν) . U(σ

γ
-σ

γ
) .
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Table . The fivemost significant uncertainty contributors�s- in the PB- HZP and PB-
HFP cases.

PB- HZP PB- HFP

Cross-sectional pair Contribution to�R/R(%) Cross-sectional pair Contribution to�R/R(%)

U(σ inel–σ inel) . U(σ inel–σ inel) .
H(σ elas–σ elas) . H(σ elas–σ elas) .
U(σ

γ
–σ

γ
) . U(σ

γ
–σ

γ
) .

O(σ elas–σ elas) . O(σ elas–σ elas) .
U(σ

γ
–σ

γ
) . U(σ

γ
–σ

γ
) .

The total sensitivity-coefficients of eigenvalue and
few-group homogenized cross section calculated by the
proposed method have good agreements with those
given by the DPmethod, which is considered as the ref-
erencemethod. The errors introduced by linear approx-
imation and NR approximation for the calculations
of the resonance cross-sectional sensitivity-coefficients
were investigated. The sensitivity-coefficients can be
considerably improved especially in the low-energy res-
onance groups and at low background cross sections.
Response sensitivity analysis shows that sensitivity-
coefficients will be overestimated in most cases if
the resonance self-shielding effects are not taken into
account except for some special cases.

The uncertainties of eigenvalue and few-group
homogenized cross sections are quantified based on the
covariance data from ENDF/B-VII.1. The uncertain-
ties of some few-group homogenized cross sections are
more than 1.0%, such as the capture cross sections and
the scattering cross sections of the fast group, etc. The
uncertainties of the fast-group homogenized cross sec-
tions are larger than those of the thermal group as a
whole. Moreover, the fast-group cross-sectional uncer-
tainty contributions become larger with the increase of
temperature, which is caused by the hardening neutron-
flux spectrum at the HFP condition for the BWR pin-
cell problem.

In summary, this paper assesses the S&U of lattice
parameters based on continuous-energy cross sections
for both accuracy and consistency with the subgroup
resonance calculation method. Future work should
perform core calculation S&U analysis based on the
improved S&U results of few-group homogenized cross
sections. The GPT-based method can be used for sen-
sitivity calculation of the core responses, such as keff,
power distribution, assembly reaction rate, reactivity
worth, and then the covariance data can be used by
the first-order uncertainty propagation formula to per-
form uncertainty calculation. The statistical sampling
method [20] can be also used for uncertainty calcu-
lation through sampling the few-group homogenized
cross sections according to the covariance data. When
burnup is considered, the two-step calculation pro-
cedure may be difficult to treat the effects [22,23].
Appropriate algorithm or approximation may be devel-
oped in the future work.
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