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INTRODUCTION

The subgroup method divides an energy group into sev-
eral subgroups according to the magnitude of the cross section.
The subgroup fixed source equation is formulated on the en-
ergy range of a subgroup, the ratio of which to the energy
range of an energy group is defined as subgroup probability.
Typically the physical probability table or the mathematical
probability table is applied[1]. However, both of the tables are
not guaranteed to share the same set of subgroup probabilities
for a resonant nuclide at different temperatures. This means
that the subgroup fixed source equation cannot be formulated
and the subgroup method will not work when the temperature
distribution is nonuniform.

To overcome this defect, the subgroup method based on
partial cross section fit scheme (PXSFS) and the simplified
partial cross section fit scheme (SPXSFS) are proposed. These
methods fit the cross sections at different temperatures as par-
tial cross sections to share a same set of subgroup probabilities.
The new methods is compared to the conventional subgroup
method (CSM) based on physical probability table[2] and the
preexisting methods: the correlation model (CM)[3, 4], the
subgroup level adjustment scheme (SLAS)[5] and the number
density adjustment scheme (NDAS)[6]. The numerical results
show that the new methods can better predict the spatial de-
pendent reaction rate than preexisting methods. Within these
two methods, the simplified scheme consumes less time.

THEORY

Conventional Subgroup Method

There are different implementations of subgroup method.
The subgroup method based on intermediate resonance approx-
imation and homogeneous physical probability table will be
discussed in this paper. The subgroup cross sections and sub-
group probabilities are obtained by preserving cross sections
over a range of background cross sections:

σx,g(σb) =

∫
Δug
σx(u)φ(u) du
∫
Δug
φ(u) du

=

∑
i

∫
Δui
σx(u)φ(u) du

∑
i

∫
Δui
φ(u) du

=

∑
i σx,iφi∑

i φi

=

∑
i σx,i

piσb
σinter,i+σb∑

i
piσb

σinter,i+σb

(1)

where subscript x is reaction type; i is subgroup index; σb is
background cross section; σx,i is subgroup cross section; φi is
subgroup flux; pi is subgroup probability; σinter,i is intermedi-
ate subgroup cross section defined as σinter,i = σa,i + σsr,i.

Firstly, the intermediate subgroup cross sections and sub-
group probabilities are obtained by simultaneous fitting. Then
the partial subgroup cross sections, including total subgroup
cross sections, absorption subgroup cross sections, scatter sub-
group cross sections and neutron production subgroup cross
sections, are obtained by fitting with fixed subgroup probabili-
ties.

The subgroup fixed source equation based on intermediate
resonance approximation is formulated as:

Ω · ∇ψi(r,Ω) + Σt,i(r)ψi(r,Ω)

=
1

4π

[
piΔugλΣp(r) + (1 − λ)Σs,i(r)φi(r)

]
(2)

where Σt,i is macroscopic total subgroup cross section; Σs,i is
macroscopic scatter subgroup cross section; λ is Goldstein-
Cohen factor; Σp is potential scatter cross section.

Once equation (2) is solved, the effective self-shielded
cross section can be obtained by:

σx,g(r) =
∑

i σx,iφi(r)∑
i φi(r)

(3)

For problems with nonuniform temperature distribution,
the pi and the corresponding energy range will be different
at different temperatures. Therefore equation (2) cannot be
formulated. The preexisting methods and the new method are
trying to unify the subgroup probabilities at different tempera-
tures.

Correlation Model

The basic idea of the correlation model[3, 4] is to find the
overlap energy range of subgroups at different temperatures
after obtaining probability tables at different temperatures re-
spectively. For a case with two temperatures, a new subgroup
probability pT1i,T2 j is defined to denotes the ratio of overlap
energy range of subgroup i at temperature T1 and subgroup j
at temperature T2 to the energy range of an energy group. For
a case with more temperatures, the overlap energy range at
all temperatures should be found. Then the probability table
is obtained based on the newly defined subgroup probabili-
ties. Accordingly, the subgroup fixed source equations are
formulated on the overlap energy ranges.

The disadvantage of this method is that the number of
subgroups will increase with increasing number of tempera-
tures. Generally, the number of subgroups can be calculated
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as:
N =
∑

l

NTl − NT + 1 (4)

where NTl is number of subgroup at temperature Tl and NT is
number of temperatures.

Subgroup Level Adjustment Scheme

The subgroup level adjustment scheme[5] forces the sub-
group probabilities at different temperatures to be the same.
Then the subgroup level (subgroup cross section) is adjusted
as:

σ�i(T ) =
pi(T )

pi(Tave)
σi(T ) (5)

where Tave is average temperature.
If the average temperature is 975 K, the subgroup cross

sections are adjusted by equation (5). Then the absorption
cross sections at different dilutions and different temperatures
of 238U are recovered by probability table according to equa-
tion (1). It is found that the absorption cross sections at all
dilutions except infinite dilution will not be preserved after
subgroup level adjustment (Figure 1).

Fig. 1. 238U absorption cross section errors at different dilu-
tions and different temperatures after adjustment of 27th group
(4.0 eV 9.877 eV)

Number Density Adjustment Scheme

The macroscopic subgroup cross section used in the sub-
group fixed source equation is written as:

Σi,k(T ) = Nkσi,k(T )

= Nk
σi,k(T )
σi,k(Tave)

σi,k(Tave)

= Nk fi,kσi,k(Tave)

(6)

where fi,k is the number density adjustment factor. In practical,
the subgroup cross sections and subgroup probabilities at av-
erage temperature is used and the adjustment factor is applied
to the number density.

The adjustment factor is calculated as:

fi,k(T ) =
σi,k(T )
σi,k(Tave)

≈ σk(T, σb)
σk(Tave, σb)

(7)

The procedure for the adjustment factor calculation is as
follows:

1. Perform self-shielding calculation by conventional sub-
group method with average temperature assumption and
obtain the self-shielded absorption cross sections for each
region;

2. Obtain the background cross sections for each region by
interpolation in the resonance cross section table at Tave;

3. Obtain the self-shielded cross section at T by interpola-
tion with known background cross section;

4. Calculate the adjustment factor for each region according
to equation (7).

Partial Cross Section Fit Scheme

Firstly let’s revisit the assumption made in the ISDDM[7].
The 238U absorption reaction rate will increase in the center
while decrease in the peripheral when nonuniform temperature
distribution is considered. However, the flux will not change
much for case with nonuniform temperature distribution.

In light of this, a new kind of partial cross section is
defined as:
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where σ�x,g(σb, T ) is the partial cross section of x reaction type
at background σb and temperature T of group g; φ(u, Teff) is
solution of neutron slowing-down problem at temperature Teff ;
Teff is the effective temperature defined to preserve absorption
reaction rate; σinter,i(Teff) is the intermediate subgroup cross
section at effective temperature; σx,i(T ) is the partial subgroup
cross section at temperature T .

Based on equation (8), the new calculation procedure is
as follows:

1. Perform self-shielding calculation by conventional sub-
group method with average temperature assumption and
obtain the absorption reaction rate of the fuel region as
Ra =

∫ ∑
i φi(r)σa,i dr;

2. Guess an effective temperature and solve the neutron
slowing-down equation over a range dilutions at the
temperature. Obtain the multi-group cross section
σx,g(σb, Teff) and continuous-energy flux φ(u, Teff). Use
the flux to condense continuous-energy cross sections at
all other temperatures and obtain σx,g(σb, T );
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3. Fit intermediate subgroup cross sections and subgroup
probabilities at effective temperature simultaneously.
Then fit total subgroup cross section, absorption sub-
group cross section, scatter subgroup cross section and
neutron product subgroup cross section at effective tem-
perature and other temperatures as partial subgroup cross
sections;

4. Since the subgroup probabilities are shared among differ-
ent temperatures, the subgroup fixed source equation can
be formulated normally. Solve the equation and obtain
subgroup flux φi(r). Calculate the spatial dependent self-
shielded cross section as σx,g(r) =

∑
i σx,i(T )φi(r)∑

i φi(r) . Obtain
the absorption reaction rate R′a =

∫ ∑
i φi(r)σa,i(T ) dr;

5. Iterate from step 2 to step 4 until the effective temperature
is found to preserve the reaction rate obtained in the first
step.

As the above procedure required searching effective tem-
perature and thus is time consuming, a simplified partial cross
section fit scheme is proposed. It is assumed that the differ-
ences between spatial dependent cross section shape at effec-
tive temperature and that at average temperature are small.
The simplified procedure is as follows:

1. Perform self-shielding calculation by conventional sub-
group method with average temperature assumption.
Obtain spatial dependent self-shielded cross sections
σx,g,conv(Tave, r) and pin-averaged self-shielded cross sec-
tion σx,g,conv(Tave);

2. Perform step 2 to step 4 described above with
average temperature. Obtain σx,g,partial(Tave, r) and
σx,g,parital(Tave);

3. Correct the self-shielded cross section as σx,g(r) =
σx,g,partial(Tave, r) σx,g,conv(Tave)

σx,g,parital(Tave)

RESULTS AND ANALYSIS

The Monte Carlo code OpenMC is used to generate multi-
group library based on JEFF-3.2. The WIMS 69 energy group
structure is adopted. The subgroup fixed source equation is
solved by OpenMOC and the neutron slowing-down equation
is solved by an in-house code to generate resonance cross
section tables on line.

A simple pin cell problem is tested to compare the new
methods, conventional subgroup method with uniform tem-
perature distribution and preexisting methods. As shown in
Figure 2, The pin cell is composed of ten equal-volume fuel
regions and a moderator region. The composition of the fuel is
238U with the number density to be 0.0221546 atoms/barn-cm
and the composition of the moderator is 1H with the number
density to be 0.0662188 atoms/barn-cm. The radius and the
pitch is 0.41 cm and 1.26 cm respectively. The temperatures
of two cases for each region are given in Table I.

The reference results are obtained by OpenMC. All the
results below are given in resonance energy range (4.0 eV
9118.0 eV) as a whole. “Absorption error” means the error of

Fig. 2. Configuration of the pin cell problem

Region Case 1 Case 2

Fuel 1 1190 820
Fuel 2 1140 860
Fuel 3 1100 890
Fuel 4 1060 930
Fuel 5 1010 970
Fuel 6 970 1010
Fuel 7 930 1060
Fuel 8 890 1100
Fuel 9 860 1140
Fuel 10 820 1190
Fuel average 975 1010
Moderator 600 600

TABLE I. Temperatures of two cases for each region

absorption reaction rate for fuel regions as a whole. “RMS”
means the root mean square error of absorption errors of all
fuel regions. “AVE” means the average error of absorption
errors of all fuel regions. For case 1, Figure 3 shows the spa-
tial dependent absorption reaction error for resonance energy
range (4.0 eV 9118.0 eV) as a whole. It can be observed that
CSM, SLAS and NDAS will underestimate the reaction rate in
the center and overestimate in the peripheral. CM, PXSFS and
SPXSFS predict spatial dependent reaction rate better. Table
II gives the summation of errors. SPXSFS performs best in
terms of RMS, which indicates the precision of reaction rate
distribution. It is interesting that the SPXSFS outperforms
PXSFS in this case. The reason is not fully understood yet
and further research is needed. For case 2, Figure 4 shows that
CSM, SLAS and NDAS will overestimate the reaction rate in
the center and overestimate in the peripheral. CM, PXSFS and
SPXSFS predict reaction rate better. Table III summarizes the
errors of the methods, within which the PXSFS and SPXSFS
perform best in terms of RMS.

CONCLUSIONS

The subgroup method based on partial cross section fit
scheme and simplified partial cross section fit scheme are
proposed and compared to preexisting methods. The numer-
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ical results show that the new methods performs better than
other methods in predicting reaction rate distribution with
nonuniform temperature distribution. Comparing these two
new methods, the simplified scheme requires less computation
time.

Fig. 3. Spatial dependent percent absorption reaction rate
errors of case 1

Fig. 4. Spatial dependent percent absorption reaction rate
errors of case 2

Method Absorption error/% RMS/% AVE/%

CSM 0.33 2.62 -0.78
SLAS 0.37 2.49 -0.61
NDAS 0.05 1.52 -0.55
CM 0.87 0.87 0.86
PXSFS 0.41 0.56 0.37
SPXSFS 0.30 0.41 0.25

TABLE II. Summation of absorption reaction rate errors of
case 1

Method Absorption error/% RMS/% AVE/%

CSM 0.33 2.84 1.45
SLAS -0.07 2.69 1.26
NDAS 0.59 1.81 1.14
CM 0.87 0.89 0.88
PXSFS 0.34 0.31 0.26
SPXSFS 0.35 0.31 0.28

TABLE III. Summation of absorption reaction rate errors of
case 2
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