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where j and k are indices of time source and collision, 
respectively. [x] denotes the largest integer not exceeding x.
� is a uniform random number on the interval of (0,1]. Note 
that location, energy, and direction of these sources are 
( , , )ijk ijk ijkEr Ω  and that �i-1 in Eq. (15) plays a role of 
controlling the total number of time sources per iteration. 
The weight of the time sources of iteration i, wi, is set to  
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where M is a number of sources per iteration initially set by 
a code user. Eq. (14) implies that �i can be estimated by the 
collision estimator as 
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NUMERICAL RESULTS  
The new � iteration algorithm and the conventional 

power iteration method [5] have been implemented in 
McCARD [9] and tested for homogeneous infinite medium 
characterized by two-group cross sections of Table I, 
varying the prompt criticality kp. The differential scattering 
cross-section of the first group, �s21, is set to 0.265714, 
0.197143, 0.128571, 0.060000, or 0.008571, which 
correspond to kp of 0.9, 0.7, 0.5, 0.3, or 0.15.

Table I. Two-group cross sections for infinite homogeneous 
problems 

Cross section First Gr. (g=1) Second Gr. (g=2)
�t 0.50 0.50
�f 0.025 0.175
� 2.0 2.0
�sgg 0.10 0.20

�sg’g (g g’)� variable 0.00
�p� 1.0 0.0

1/v [sec/cm] 2.28626�10-10 1.29329�10-6

The MC � calculations are performed for 1000 active 
iterations on 10,000 sources per iteration. Table II shows 
comparisons of �’s calculated by the new algorithm and the 
conventional method with analytic solutions. From the table, 
one can see that the MC results from the new method agree 
well with the analytic references within 95% confidence 
intervals while the conventional method fails when kp are 
0.3 and 0.15. 

Table II. � comparisons for infinite homogeneous problems 

kp Ref. � Conventional
method (SD)

New method
(SD)

0.90 26507.1 26500.1 (12.8) 26524.4 (14.0)
0.70 79523.4 79574.6 (33.8) 79522.6 (18.1)
0.50 132544.0 132518.0 (70.8) 132539.0 (20.9)
0.30 185568.0 fail 185554.0 (26.6)
0.15 225338.0 fail 225328.0 (31.3)

The MC � calculations with continuous-energy cross 
section libraries produced from ENDF/B-VII.0 are 
conducted for Godiva [8]. The McCARD � calculations are 
performed for 1000 active iterations on 10,000 sources per 
iteration. Table III shows a comparison of the McCARD 
result with � from an exponential fit of a numerical pulsed 
neutron experiment. 

Table III. �  estimation for Godiva 
Ref. (Err.[%]) McCARD (RSD[%])

Godiva 1.15076×106 (0.52) 1.16506×106 (0.35)

CONCLUSIONS 
A new MC � calculation method is developed to 

estimate the fundamental mode � eigenvalue in prompt 
subcritical systems. In the new � iteration algorithm, the 
time sources are iteratively updated while the fission 
sources are updated in the conventional method. It is
demonstrated that the new method does not have the 
instability problem that the conventional MC power 
iteration methods have met in predicting the fundamental 
mode � for large subcritical systems. 
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According to the optical thickness of the mesh, 
numerical methods for solving neutron diffusion equation 
can be simply classified into fine mesh methods and 
coarse mesh methods. Fine mesh methods employ linear 
or other lower order approximations for the detailed 
neutron flux within each mesh. It is this approximation 
that makes these algorithms insufficiently accurate for 
large meshes. Hence, the number of grids in fine mesh 
methods is usually tremendously large for reactor core 
problems. In contrast, coarse mesh methods employ high 
order approximations within each mesh (named a node), 
which provides high computing efficiency. Consequently, 
coarse mesh methods such as nodal methods play an 
important role in reactor core neutronics simulation. 

Both fine and coarse mesh methods assume a 
homogeneous distribution of cross section within each 
mesh, which requires the spatial homogenization. It works 
well for traditional PWR with the legacy neutronics 
simulation schemes [1]. However, new reactor concepts 
such as Molten Salt Reactor (MSR) [2] and the improved 
computing schemes such as pin-by-pin calculations [3] are 
demanding the improvement of coarse mesh methods to 
treat heterogeneous distribution of cross section within 
each mesh. For instance, heterogeneous [4] and sub-
element [5, 6] variational nodal methods were developed to 
carry out whole assembly heterogeneous calculation. 
Heterogeneous Nodal Expansion Method [7] was designed 
to capture the differential worth of control rods without 
control rod cusping effect [8, 9].

Instead of homogeneous cross section distribution, 
these heterogeneous methods can handle piece wise cross 
section distribution within each node. However, 
simulation with continuous cross section distribution still 
remains unresolved. Unfortunately, this occurs in the 
Molten Salt Reactor [2] core. Due to the continuous 
change of fuel temperature and density, neutron cross 
section varies continuously in space. It is this application 
that motivates our investigation of heterogeneous 
variational nodal method with continuous distribution of 
cross section in one dimensional Cartesian space. 
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In one dimensional slab geometry, one group steady 
state neutron diffusion equation with isotropic scattering 
and fission is: 
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where the source 
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J(x) and �(x) respectively refer to net current and flux 
profile (cm-2·s-1), �s(x) and �f(x) stands for macroscopic 
absorption and fission cross section (cm-1), and k is the 
effective multiplication factor. 

The functional similar with the one for homogeneous 
node is as following: 
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where �a(x)= �t(x) - �s(x). Similar with the homogeneous 
variational nodal method [10], it can be proved that the 
Euler-Lagrange equation of the functional in Eq. (4) is the 
diffusion equation in Eq. (1). 

Apply Ritz procedure by approximating the volume 
flux and source as expansions of orthogonal spatial trial 
functions with unknown coefficients: 
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Substituting Eq. (5) into Eq. (2) leads to the 
relationship between the flux and source moments: 
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'
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where 

( ) ( ) ( )∫= v iifiif dxxfxfx�� '',
. (7) 

Substituting Eq. (5) into Eq. (4) yields: 

[ ] Mj�s�A��j� TTT 22, +−=vF . (8) 
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where �, j and s are vectors over the entire node 
constructed by the respective expansion moments, the 
matrix  
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Requiring the function to be stationary with respect 
to variations in �T yields: 

( )MjsA� −= -1  (11) 

The variation with respect to j� yields the requirement that: 

�M T
γγψ =  (12) 

be continuous. Define the partial currents as: 

γγγ ψ jj
2
1

4
1

±=±  (13) 

and substituting Eq. (11) into Eq. (12) leads to the nodal 
response matrix equations: 

−+ += RjBsj  (14) 

( )−+ −−= jjCHs�  (15) 
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The heterogeneous variational nodal method can be 
implemented using Eqs. (6), (14) and (15). The treatment 
of boundary conditions are the same as in literature [10]. 
The difference between homogeneous and heterogeneous 
variational nodal methods lies in Eqs. (7), (9) and (10). 
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Based on the above theory and formulas, a code 
named Violet has been developed in FORTRAN. 
According to the design of Molten Salt Reactor [2], a one 
dimensional MSR core problem is designed and used to 
test the heterogeneous variational nodal method. 

The one dimensional MSR core problems is 400 cm 
long with local coordinate origin located as the bottom. 
Vacuum boundary condition is applied to both top and 
bottom. One group macroscopic cross sections are: 

( ) ( )xx� 0001.012.0 +×=γ
, [ ]400,0∈x  cm (21) 

( ) ( )xx� f 0001.011.0 +×= , [ ]400,0∈x  cm (22) 

( ) ( )xx�s 0001.015.0 +×= , [ ]400,0∈x  cm. (23) 

A reference solution is obtained from homogeneous 
variational nodal method. It divides the entire domain into 
80 regions and assumes a flat cross section distribution 
within each 5 cm node. The multiplication factor is 
0.666603. The detailed flux profile is shown in Fig. 1. 

The heterogeneous variational nodal method divides 
the entire domain into 8 nodes with each node 50 cm wide. 
Within each node, a cubic flux expansion was employed. 
The multiplication factor is 0.666602, which is only 0.1 
pcm different from the reference solution. The flux profile 
in Fig. 1 demonstrates the agreement of it with the 
reference solution. 
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Fig. 1  Flux profiles of Vacuum-Vacuum B.C.. 

In addition, another case was also used to test the 
code. The only difference between the second and the first 
cases is the boundary condition on the top. Instead of 
vacuum, reflective boundary condition is set. A cubic 
detailed flux expansion was also employed in the 
heterogeneous calculation. Both the reference keff and the 
one from heterogeneous nodal method are 0.666644. The 
agreement of their flux profiles can be found in Fig. 2. 
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Fig. 2  Flux profile with Vacuum-Reflective B.C.. 
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To handle continuous cross section distribution, 
heterogeneous variational nodal method is investigated in 
one dimensional Cartesian space. A one dimensional test 
problem has been used to verify the theory and code 
developments. Promising results demonstrate their 
reliability. 

However, this investigation is still pretty initial. More 
analysis in one dimensional case and further development 
in multi-dimensional cases are required in the future. 
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