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Due to its accuracy and geometric flexibility, the subgroup method is becoming a more and more attrac-
tive resonance calculation approach dedicated to obtaining resonance group macroscopic cross sections
from multi-group libraries. In order to increase the efficiency of our subgroup code SUGAR, this paper
contributes to the development of the code from four aspects. Firstly, subgroup parameters were proved
to be problem-independent and the number of subgroups can be chosen automatically. This motivated us
to produce a new multi-group library. Secondly, what subgroup method really needs is the relative sub-
group flux within each multi-group instead of the relative multi-group flux between different groups.
Thus, it is unnecessary to iteratively calculate in the whole energy range if the connections between dif-
ferent energy ranges can be approximated by a simple method. Thirdly, for problems with complex iso-
tope compositions, resonant nuclides could be grouped according to their resonance characteristics. By
this grouping, computational effort could be significantly reduced since nominal resonant nuclides turn
out to be these nuclide groups rather than the actual nuclides. Finally, considering that most of the com-
putational effort is spent on solving the subgroup neutron transport equation, an in-house matrix MOC
solver is employed to replace the AutoMOC solver. In this way, the higher speed of the matrix MOC solver
can be fully utilized by our subgroup code. To verify these theories and to prove the improvements, a ser-
ies of benchmark problems were solved. It is demonstrated by these numerical results that these tech-
niques can accelerate the code SUGAR by a factor of 5–32 with respect to overall computations
without losing accuracy and geometric flexibility. It was also found that the more complex the resonant
nuclide composition is, the sharper the acceleration effect appears to be.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction gular assemblies with only one single fuel rod in it. On the other
Resonance calculation is one of the most important steps for
lattice calculation in nuclear reactor physics. Traditional resonance
self-shielding calculation methods mainly include the equivalent
theory employed by WIMSD4 (Trkov and Ravnik, 1993), CASMO-
3 (Misu and Grummer, 1997) and DRAGON (Dahmani et al.,
2008), the superfine group method (Ishiguro, 1973) employed by
SRAC (Tsuchihashi, 1989). Both of them need to calculate the first
flight collision probability. However, the first flight collision prob-
ability only can be obtained when the geometry is regular. So both
two methods can only be used for simple geometry in traditional
nuclear reactors.

As nuclear energy plays a more and more important role, sev-
eral reactor concepts and nuclear devices are proposed and de-
signed, which challenge the legacy resonance calculation
methods. On one hand, differing from the traditional designs, most
of them contain rigorous fuel types with complex geometries. Tak-
ing CANDU (Jeong and Suk, 2002) as an example, fuel assemblies
are pressure tubes containing multiple fuel rods instead of rectan-
hand, new fuel assemblies or other components usually contain
complex isotope compositions including additional resonant nuc-
lides such as Pu, Th, Gd, Er and I, which result in the resonance
interference effect stronger than ever. For example, Er and I are
usually considered as non-resonant nuclides in legacy PWRs while
they have to be treated as resonant nuclides in reactors for minor
actinides (MA) or long lived fission products (LLFP) transformation
(Salvatores, 2005). In Fig. 1, a curve of I-129’s microscopic cross
section is shown following the continuous-energy. I-129 has large
numbers of strong peaks in high energy region while it does not af-
fect the computational accuracy in the ecumenical water cooled
reactor and be considered as non-resonant nuclides. However, it
is necessary to consider I-129 in the FP transformation calculation
(He et al., 2010).

The increasing number of resonant nuclides not only requires
the multi-group library to provide corresponding resonance data
but also increases the computing efforts by making the multi-nu-
clide resonance iteration much more complicated. In this situation,
the wavelet expansion method (Yang et al., 2010) can handle
unstructured geometries and multi-nuclide resonance. However,
its huge number of coefficient equations results in a relatively
low efficiency (Le Tellier et al., 2009; Yang et al., 2010).
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mailto:caolz@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.anucene.2013.11.029
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


Fig. 1. Microscopic total cross section of I-129.

Fig. 2. The flowchart of iteration among fast group and thermal group.
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The subgroup method, advanced from 1990s by Takeda and
Yokoyama (1997) and Hébert (2009) and currently implemented
in DRAGON (Dahmani et al., 2008) and WIMS (Patrulescu et al.,
1997) provides a novel perspective of getting the probability distri-
bution of cross section for resonant nuclides. The subgroup method
divides the cross section itself into several sections which are
called the subgroups rather than to divide along with the energy
variable. In addition to the ability of excellent accuracy, the neu-
tron slowing down equation is transformed into a neutron-trans-
port-equation-like equation without introducing any limitation
to geometry treatments. Based on these two advantages, a sub-
group code named SUGAR (Subgroup Universal Geometry Adapt-
able Resonance) has been developed in the NECP (Nuclear
Engineering Computational Physics) laboratory by Liu (2010) and
Cao et al. (2011). This code employs the classic subgroup theory
and a MOC solver named AutoMOC (Chen et al., 2008) is involved
to maintain the accuracy and geometry flexibility of subgroup
method.

However, the efficiency of the code SUGAR appears to be insuf-
ficient mainly because of two reasons. The first is the frequent calls
of the solver to solve the neutron-transport-equation-like slowing-
down equation iteratively. The second is the appearance of more
resonant nuclides such as Pu in the MOX fuel (Franceschini and
Petrovic, 2008) and MA or LLFP in the transmutation targets. In or-
der to increase the efficiency without losing the accuracy and geo-
metric flexibility, this paper concludes four improvements on the
SUGAR code. Section 2 introduces the theories of these improve-
ments including: (1) Problem independent subgroup parameters
are pre-calculated in a newly produced multi-group library with
361 energy groups. (2) Iteration simplification is made based on
the facts that almost all the fission neutrons are generated into fast
energy groups and that there is no up-scattering in resonance en-
ergy groups. (3) In the multi-nuclide resonance iterative calcula-
tion, the resonant nuclides are divided into several groups in
order to solve the resonance interference more effectively. (4)
The transport solver has been replaced by an advanced MOC solver.
Section 3 lists and discusses the corresponding numerical results.
Some conclusions are drawn in Section 4.

2. Theoretical model

2.1. Fundamentals of the subgroup method

Differing from the traditional self-shielding methods, the sub-
group method divides the cross section itself into several sections
which are called the subgroups, rather than dividing the energy
variable. After the subgroup parameters are obtained by either fit-
ting method (Kitada et al., 1997) or moment method (Chiba and
Unesaki, 2006), a neutron transport solver is employed to solve
the subgroup slowing down equation in each single energy group
to get subgroup flux. Then the multi-group averaged resonance
cross sections can be obtained by utilizing the subgroup cross sec-
tion and the subgroup flux.

In the subgroup method, subgroup parameters including sub-
group cross section and subgroup probability are defined as
follows

rx;i;g ¼
R

DEi rx;gðEÞ/ðEÞdER
DEi /ðEÞdE

ð1Þ

pi;g ¼
DEi

DEg
ð2Þ

where g and i index the multi-group and subgroup numbers respec-
tively, rx,i,g means the microscopic x subgroup cross section of
group g and subgroup i. /(E) means the flux spectra. rt,g(E) means
multi-group cross section of group g and the range of DEi is
DEi 2 fE=rt;i 6 rt;gðEÞ 6 rt;iþ1g.

The slowing down equation is transformed into the following
form which is the same as the multi-group neutron transport equa-
tion (Liu, 2010)

d/g;iðr;XÞ
ds

þ Rt;g;iðrÞ/g;iðr;XÞ ¼ Q g;iðr;XÞ ð3Þ

Q g;iðr;XÞ ¼ Q s;g;iðr;XÞ þ Q f ;g;iðr;XÞ ð4Þ

where /g,i(r, X) is flux in energy group g and subgroup i. Rt,g,i(r) is
macroscopic total subgroup cross section in energy group g and
subgroup i. Qs,g,i(r, X) and Qf,g,i(r, X) are the scattering and fission
sources from all the other energy groups to energy group g and sub-
group i.

On one hand, all the geometric constrain lies in Eq. (2), which
means that subgroup method can handle any geometry that the
transport solver can handle. This is why SUGAR code employs
the MOC solver which has the ability to treat arbitrary geometries.

On the other hand, the source term of Eq. (3) is contributed by
all the other energy groups through scattering and fission. Hence,
there is iteration with both fast and thermal energy groups getting
involved even the resonance energy groups are the only targets.
The iteration scheme is shown by Fig. 2.

Also, it can be seen that if there are more than two resonant
nuclides, iteration is usually carried out to consider the interfer-
ence effects between different nuclides and regions. Within each



Fig. 3. The flow chart of producing multi-group library for subgroup method.

Fig. 4. The generations of subgroup parameters and multi-group cross sections for
library.
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iteration of this process, there is a loop between all the resonant
nuclides. Within each loop, only one resonant nuclide is taken ac-
count with all the others treated as non-resonant nuclides. This
iteration is terminated until all the interference effects are well
handled. In some special cases, if there are different resonant nuc-
lides in different regions, the region iteration is needed, which
means taking resonant nuclides of one region as resonant nuclides
while nuclides of other regions as non-resonant nuclides. However,
if the materials of these two regions are the same, it is not neces-
sary to iterate between these regions.

2.2. Problem independence of the subgroup parameters

Originally, the subgroup parameters have to be calculated spe-
cifically for each specific problem or even a specific case. However,
it was found (Liu, 2010) that with the NR approximation employed,
the group constant can be written into the following form:

rx;gðr0Þ �
rx;1;g

p1;g
ðrt;1;gþr0Þ

� � � þ rx;N;g
pN;g

ðrt;N;gþr0Þ
p1;g

ðrt;1;gþr0Þ
� � � þ pN;g

ðrt;N;gþr0Þ

ð5Þ

where rx,g(r0) is the microscopic cross section of group g, r0 is the
dilution cross section. In SUGAR code, the max subgroup number is
3, so the max number of N is 3.

Along with Eq. (5), the subgroup parameters can be obtained if
the multi-group cross sections with different dilution cross sec-
tions are given. Because the multi-group cross sections for different
dilution cross sections in the library are problem independent, and
the subgroup parameters only depend on isotope type and temper-
ature. Thus, there is no need to calculate subgroup parameters iter-
atively during resonance calculation. These problem independent
parameters can be pre-calculated and stored into the multi-group
library to increase the computational efficiency of resonance calcu-
lation. For better efficiency, the number of subgroup is chosen
automatically. In Eq. (5), the numerator and denominator in the
formula can be written as multinomial which is shown as
following

rt;gðrbÞ ¼
c2r2

b þ c1rb � � � þ c0

d2r2
b þ d1rb � � � þ d0

¼ c2ðrb þ x1Þðrb þ x2Þ
d2ðrb þ x3Þðrb þ x4Þ

ð6Þ

where xi (i = 1, 2) is the solution if let numerator equal zero and xi

(i = 3, 4) is the solution if let denominator equal zero. If |x1 � x3| 6 e
or |x2 � x4| 6 e, the subgroup number is two and the formula can be
predigested as following

rt;gðrbÞ ¼
c2ðrbþx1Þ
d2ðrbþx3Þ

; jx2 � x4j 6 e
c2ðrbþx2Þ
d2ðrbþx4Þ

; jx1 � x3j 6 e

8<
: ð7Þ

If |x1 � x3| 6 e and |x2 � x4| 6 e are both established, the subgroup
number is one and the subgroup cross section equal multi-group
cross section of same group.

2.3. If |x1 � x3| 6 e and |x2 � x4| 6 e are both not established, the
subgroup number is three. Production of a multi-group library

Due to the demand of storing subgroup parameters and the in-
crease of resonant nuclides, a new multi-group data library needs
to be produced especially for the subgroup resonance calculation
method.

For the new multi-group data library, firstly, a finer energy
group structure is selected. The 361 groups format according to
SHEM361 structure (Hébert and Santamarina, 2008) is introduced.
Secondly, the number of resonant nuclides is extended. These fresh
resonant nuclides are the long lived fission product isotopes like I-
129, Se-79, Pd-107, Sn-126, Cs-125, and the burnable poison iso-
topes including Gd and Er, and some structure materials including
Fe and Cu.

With the NJOY code, the multi-group library can be produced
based on ENDF-BVII. For better accuracy, the scattering resonance
is considered and resonance scattering integral table is produced.
Meanwhile, a servo code is developed to transform formats, to
maintain nuclide data files, to compute pseudo fission product iso-
topes, and so on. Its flow chart is shown in Fig. 3.

According to Section 2.2, the subgroup parameters are problem
independent and can be treated beforehand. The generations of
these subgroup parameters and multi-group cross sections can
be completed together as Fig. 4.

2.4. Iteration optimization in subgroup method

As shown in Fig. 2, neutron slowing down equation for all the
energy groups are coupled together due to the connections of scat-
tering and fission source contributions. The resulting iteration be-
tween all the energy groups is pretty time consuming. But it was
found that this iteration can be simplified by examining each of
these connections.

Firstly, it is the fission source contribution. Summing the fission
spectrum within fast energy range, it can be found that almost all
the fission neutrons are fast ones

X55

g¼1

vg ¼ 0:9995 ð8Þ
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Together with the assumption that neutron absorption and genera-
tion are separated by dividing the fission matrix into the vector
product of neutron fission spectrum vector v and macroscopic neu-
tron production cross section vector tRf, the fission connection be-
tween thermal and fast energy groups is decoupled.

Secondly, it is the up scattering source contribution. Examining
the scattering matrix of each isotope within the new multi-group,
it can be reasonably assumed that there is no up scattering within
the resonance energy range.

The original source in the subgroup transport calculation is
shown as Eq. (9).

Q ¼ 1
4p

X
j¼1;N

Z
4p

Rs;g;j!g;i � /g;jðr;X0ÞdX0

þ pi
1

4p

Z
4p

Rs;g0!g � /g0 ðr;X0ÞdX0 þ 1
4pk

X
g¼1;G

mRf ðrÞ/gðrÞ
" #

ð9Þ

Through the two simplifications which have been shown above,
the original source in the subgroup transport calculation could be
simplified as following

Q ¼ 1
4p

X
j¼1;N

Z
4p

Rs;g;j!g;i � /g;jðr;X0ÞdX0 þ pi ðQ s;g0!gðr;XÞÞ
0

h i
ð10Þ

where ðQ s;g0!gðr;XÞÞ
0 is the initial value from high energy group

and it is does not need to update in each subgroup transport
calculation.

The above two assumptions eliminates the fission and scatter-
ing contributions from low energy groups to high energy groups.
Thus, the iteration as shown in Fig. 2 can be simplified into the
one shown in Fig. 5 by sweeping the fast, resonance and thermal
energy group only once.

This iteration optimization moves the fast group calculation and
thermal group calculation out of the resonant nuclides iterations.
When the iteration has been finished and the self-shielding cross
section has been obtained, the multi-group transport calculation
Fig. 5. The advanced flow chart of iteration calculation.
follows to get the k-inf and multi-group flux. Thus, the speedup
can be estimated as following:

aT
1 ¼

nðTfast þ Tres þ TthermalÞ
Tfast þ nTres þ Tfast þ Tres þ Tthermal

ð11Þ

where aT
1 is the speedup of iteration optimization and n is the iter-

ation numbers, Tfast, Tres and Tthermal represent the computational
time cost by transport calculations in the fast, resonance and ther-
mal groups, which are proportional to their numbers of energy
groups.

The iteration number depends on the number of resonant nuc-
lides. So from the equation it can be seen that the more the itera-
tions are, the larger the speedup is. In another word, the more the
resonant nuclides are, the better the speedup of iteration optimiza-
tion is.

2.5. Resonant nuclide grouping technique for resonance interference
problem

The increase of resonant nuclides causes the low efficiency of
legacy treatment. So it is necessary to consider how to keep effi-
ciency and accuracy when resonant nuclides increase in calcula-
tion zone. The basic idea is that the large number of resonant
nuclides could be classified into a small number of classes
(Wemple et al., 2007) by grouping resonant nuclides with similar
resonance characterizations rather than treating them as a single
resonant nuclide.

According to the character of different resonant nuclides, they
could be divided into several classes. Because of the similar peak
width within one class, a pseudo nuclide is generated to represent
all the resonant nuclides in this class. To generate this pseudo iso-
tope, the resonance integral is preserved as shown in Eq. (12) after
a typical isotope is chosen among the corresponding class

RxðrrepÞ ¼
X

i

Niri ¼
X

i

Ni
Ri1

Rrep;1
rrep ¼

P
iNiRi1

Rrep;1

� �
rrep ð12Þ

where Rrep,1 and Ri,1 are the resonance integrals of the typical and
other resonant nuclides under the infinitude background cross sec-
tion, rrep and ri are the corresponding subgroup cross section, Ni is
the atomic density.

Normally, basing on nuclides characterizations, the resonant
nuclides which have overlapping or part overlapping will be di-
vided into same group.

For example, if there is a complicated fuel cell which contains
U-235, U-238, Pu-239, Cs-133, Gd-154, Gd-155, Gd-156, Gd-157
and Gd-158, with the above resonant nuclides classified method
and the class as shown in Table 1, only two pseudo resonant nuc-
lides need to be iterated instead of the original nine isotopes.

What’s more, considering from the regions and concentrations’
point of view, some special nuclides which only occur in individual
regions will be divided into same class. For example, Ag and In only
occur in control rod and have high concentration, so they should be
divided into a single class.

In SUGAR, subgroup cross sections and subgroup probability are
all different in every resonance energy group. So compared with
Table 1
Sort of nine resonant nuclides.

Resonant nuclides Class

U-235 Gd-155 U-238(sort I)
U-238 Gd-156 U-235(sortII): (U-235,Pu-239,Cs-133,Gd-

154,Gd-155,Gd-156,Gd-157,Gd-158)
Pu-239 Gd-157
Cs-133 Gd-158
Gd-154



Fig. 7. 3 � 3 PWR assembly problem/cm.

Table 2
Cases of 3 � 3 assembly problem.

Pin cell Case

1 2 3

1 UO2-3% UO2-3% UO2-5%
2 UO2-5% UO2-5% UO2-5%
3 UO2-5% UO2-5% UO2-5%
4 UO2-3% UO2-3% UO2-5%
5 UO2-5% Water Water
6 UO2-3% UO2-3% UO2-5%
7 UO2-5% UO2-5% UO2-5%
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other subgroup resonance method (Wemple et al., 2007), because
of different subgroup probability in every resonant nuclides, it is
difficult to merger same group resonant nuclides’ self-shield cross
sections based on the typical resonance nuclides’ subgroup flux
when using the nuclides grouping technique. So, a new simple
method is brought forward. The ideological kernel of the method
is straight calculating the multi-group cross section instead of
merging subgroup cross section. The calculation equation is shown
as following,

ri;self shielding ¼
Ri1

Rrep;1
rrep;self reielding ð13Þ

Here rrep,self_reielding is typical nuclides’ self shielding microscopic
cross sections, ri,self_shielding is other resonant nuclides’ self shielding
microscopic cross sections.

The speedup of this resonant nuclides group technique can be
estimated as following

aT
2 ¼

Tfast þmTres þ Tfast þ Tres þ Tthermal

Tfast þ nTres þ Tfast þ Tres þ Tthermal
ð14Þ

Here aT
2 is the speedup of resonant nuclides group technique, n and

m are the iteration numbers before and after the utilization of this
technique.

The original iteration number depends on the number of reso-
nant nuclides. So from the equation it can be seen, the more the
original iteration number, the better the speedup is. In another
word, the more the resonant nuclides are, the better the speedup
of resonant nuclides group technique is.

2.6. Neutron transport solver

As explained in Section 2.1, an in-house neutron transport sol-
ver named as AutoMOC was employed to solve the neutron slow-
ing down equation as in Eq. (2) in the code SUGAR. At present, a
matrix MOC solver named MMOC (Zhang et al., 2011) has been in-
volved, which provides both the ability in handling arbitrary 2D
geometry and superior computational efficiency.

According to the acceleration technique for 2D MOC based on
Krylov subspace and domain decomposition methods, a speedup
Fig. 6. Flow chart of subgroup resonance calculation.
of 1–10 can be achieved by replacing AutoMOC with MMOC (Zhang
et al., 2011).

Finally, the new resonance calculation flow chart is obtained
and is shown in Fig. 6.
3. Numerical results

In order to verify the above theories and the corresponding code
development, a variety of resonance calculation benchmarks were
employed, in which the large water hole, heterogeneous geome-
tries, various of fuel types and enrichments are considered. All
the calculations in this paper are carried out on a PC with Intel Core
i7-2600 CPU (4 kernels, 3.40 GHz) and 2 G main memory.
8 UO2-3% UO2-3% UO2-5%
9 UO2-5% UO2-5% UO2-5%

4 5 6

1 MOX-7% MOX-7% MOX-7%
2 MOX-7% UO2-5% UO2-5%
3 MOX-7% MOX-7% MOX-7%
4 MOX-7% UO2-5% UO2-5%
5 Water UO2-5% Water
6 MOX-7% UO2-5% UO2-5%
7 MOX-7% MOX-7% MOX-7%
8 MOX-7% UO2-5% UO2-5%
9 MOX-7% MOX-7% MOX-7%

Table 3
Material atomic densities in six cases.

Nuclides UO2-5%a MOX-7% Water Zr-nature

U-235 1.1547E�3 1.0913E�3 – –
U-238 2.1939E�2 2.0474E�2 – –
Pu-238 – 4.5730E�5 – –
Pu-239 – 1.0124E�3 – –
Pu-240 – 4.8224E�4 – –
Pu-241 – 1.7458E�4 – –
Pu-242 – 1.3126E�4 – –
O-16 4.6187E�2 4.6823E�2 6.7233E�2 –
H-1 – – 3.3617E�2 –
Zr-nature – – – 4.3599E�2

a 1024 atoms/cm3.



Table 4
K-inf of the 3 � 3 PWR assembly problem.

Case Monte Carlo Original model Advanced model Original model error (%) Advanced model error (%)

1 1.43959(0.00016) 1.43766 1.43847 0.134 0.078
2 1.45811(0.00016) 1.45645 1.45743 0.117 0.046
3 1.50550(0.00016) 1.50312 1.50402 0.159 0.098
4 1.35099(0.00015) 1.35291 1.35188 �0.142 �0.214
5 1.38610(0.00014) 1.38793 1.38704 �0.132 �0.284
6 1.40942(0.00014) 1.40956 1.41063 �0.009 �0.157

Table 5
The speedup of the six cases for the PWR problem.

Case 1 2 3 4 5 6

Original model(s) 261 293 270 607 614 679
Advanced model(s) 52 54 53 49 50 51
Speedup 5.0 5.4 5.1 12.4 12.2 13.3

Table 6
The speedup of three kinds of improvements in six cases.

Case 1 2 3 4 5 6

aT
1

1.6 1.6 1.6 1.6 1.6 1.6

aT
2

– – – 2.1 2.1 2.1

aT
3

3.1 3.4 3.2 3.7 3.6 4.0

Fig. 9. Geometry of the SCWR assembly problem including the detail of resonance
zone partition.
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3.1. 3�3. PWR assembly problem

This problem is from the literature benchmark problems and re-
sults for verifying resonance calculation methodologies (Wu et al.,
2012). The geometry of 3 � 3 PWR assembly problem is shown in
Fig. 7. The problem includes six cases shown in Table 2 and the
material of each case is shown in Table 3. The six cases contain five
sorts of cells and have different alternate collocation. The alternate
collocation results in strong heterogeneity and has negative effect
to resonance calculation accuracy.

The Monte Carlo method was used to provide the reference
solution. In the Monte Carlo calculation, 20,000 particles are put
for each generation and 300 generations are tallied, 50 of which
are disregarded. The results of k-inf are shown in Table 4.

In order to check the results of iteration optimization, resonant
nuclides grouping technique, and transport solver advance, the re-
sults of codes with and without these three improvements are
compared. The speedup results are shown in Table 5.

From Table 4, it can be seen that compared with the Monte Car-
lo code, both the original and new codes can provide k-inf with rel-
ative error about 0.1% in the UO2 fuel cases and less than 0.3% in
the MOX fuel cases. For further verification, Fig. 8 compares the
microscopic total cross sections of U-235 and U-238 in case 1 with
the ones provided by Monte Carlo and SUGAR. The relative errors
are almost less than 1% and 3–4% in several groups.

The 361 groups structure is employed in the transport solver, so
the proportion of Tfast, Tres and Tthermal can be obtained as Tfast:-
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And speedup estimation of resonant nuclides grouping technique is

aT
2 ¼

118mþ 416
118nþ 416

ð16Þ

And the speedup estimation of transport solver switch is

aT
3 ¼

aT
total

aT
1 � aT

2

ð17Þ

here aT
total is the total speedup obtained from Table 4.

For UO2 cases from 1 to 3, there are 2 resonant nuclides and 4
iterations. For MOX cases from 4 to 6, there are 6 resonant nuclides
and 12 iterations originally. In cases from 4 to 6, the resonant nuc-
lides are divided into 2 groups and there are 4 iterations after the
Table 7
The atomic densities of can and water in SCWR.

Nuclides Water in water holea Water in fuel pin cell Can

O-16 2.5875E�02 3.3444E�03 –
H-1 5.1751E�02 6.6889E�03 –
Fe-nature – – 5.7287E�02

a 1024 atoms/cm3.

Table 8
The SCWR assembly fuel material detail.

Nuclides Atomic densitya Nuclides Atomic density

U-234 2.069E�08 Am-242 4.488E�10
U-235 1.404E�04 Am-243 2.629E�07
U-236 3.294E�05 Cm-242 5.535E�08
U-238 4.247E�03 Cm-243 1.047E�09
Np-237 2.784E�06 Cm-244 6.775E�08
Np-239 3.709E�07 Tc-99 1.087E�05
Pu-238 7.949E�07 Ru-101 9.983E�06
Pu-239 3.513E�05 Ru-103 5.018E�07
Pu-240 9.655E�06 Rh-103 5.416E�06
Pu-241 7.239E�06 Rh-105 1.145E�08
Pu-242 1.495E�06 Pd-105 3.945E�06
Am-241 2.347E�07 Pd-108 1.254E�06

a 1024 atoms/cm3.

Table 9
K-inf of the SCWR assembly problem.

Monte Carlo (standard deviation) Original model Advanced m

0.68019(0.00016) 0.67895 0.67912
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Fig. 10. U-235 and U-238 microscopic cros
utilization of the grouping technique. Therefore, the speedup of
iteration optimization, resonant nuclides grouping technique and
transport solver replacing can be obtained by using Eqs. (15)–
(17), and listed in Table 6.

3.2. SCWR assembly problem

This problem comes from a super critical water assembly prob-
lem which contains large water holes (Zhao et al., 2013). Compared
with other assembly problems, its heterogeneity is more promi-
nent and its geometry is more complicated. Fig. 9 shows the geom-
etry including the details of resonance zone partition used by
SUGAR.

In order to test the resonant nuclides grouping technique, it is
supposed that there are sufficient resonant nuclides in the fuel.
In this case, the assembly contains 36 non-resonant nuclides and
16 resonant nuclides. The atomic densities of fuel can and water
are shown in Table 7 and the fuel composition is shown in Table 8.

The results in Table 9 show that both the original and new
codes agree well with the Monte Carlo method with relative error
of about 0.2%. For further verification, one cell as marked in Fig. 9 is
chosen to compare its microscopic total cross sections of U-235
and U-238. The comparisons are shown in Fig. 10. It can be found
Nuclides Atomic density Nuclides Atomic density

Ag-109 7.759E�07 Sm-149 3.793E�08
I-135 4.766E�09 Sm-150 2.492E�06
Xe-135 3.037E�09 Sm-151 1.686E�07
Cs-133 1.155E�05 Sm-152 8.712E�07
Cs-134 1.044E�06 Eu-153 8.913E�07
Cs-137 1.200E�05 Eu-154 1.868E�07
Nd-143 8.792E�06 Eu-155 5.394E�08
Nd-145 6.570E�06 Gd-154 3.413E�07
Pm-147 1.877E�06 Gd-155 4.047E�09
Pm-148 9.096E�09 Gd-156 6.635E�06
Pm-149 9.721E�09 Gd-157 6.816E�09
Sm-147 7.332E�07 Gd-158 7.473E�06

odel Original model error (%) Advanced model error (%)

0.18 0.18
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Table 10
The speedup of SCWR assembly calculation.

Case Original model(s) Advanced model(s) Speedup

SCWR assembly 21,792 665 32.8

Table 11
The speedup of three improvements for the SCWR assembly problem.

Improved model aT
1 aT

2 aT
3

SCWR assembly 1.6 4.7 4.4
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that the results agree well with the results of Monte Carlo calcula-
tion. The speedup result is shown in Table 10.

There are 16 resonant nuclides and 32 iterations for the original
code. The resonant nuclides are divided into 2 groups and the iter-
ation number is 4 for the new code. Finally the speedup of iteration
optimization, resonant nuclides grouping technique and transport
solver replacing are shown in Table 11.

Compared with the original one, the improved version of SU-
GAR runs faster by a factor of about 32.8 in this problem, which
is higher than the one for the 3 � 3 PWR assembly problem. There
are two reasons that can be found from the separated speedup.
First, it is clear that the speedup of resonant nuclides grouping
technique in SCWR problem is larger than that of the 3 � 3 PWR
assembly problems (4.7 and 2.1 respectively). Second, the speedup
of transport solver replacement is higher than that in 3 � 3 PWR
assembly problems (4.4 and 4.0 respectively), since the MMOC
code is more suitable for solving the complicated geometry
problems.

4. Conclusion

In order to improve the efficiency of subgroup resonance calcu-
lation code SUGAR, this paper first produces a multi-group library
in SHEM-361 format, then produce the problem-independent sub-
group parameters, proposes an algorithm of automatically choos-
ing of subgroup number. Based on the two assumptions, the
iteration process within subgroup method is simplified. Aiming
at multi-nuclide resonance problem, this paper employs the reso-
nant nuclides grouping technique. In addition, the neutron slowing
down equation solver is upgraded to a matrix MOC solver from the
original one, which obviously improves the computational effi-
ciency with geometric flexibility maintained.

From the theoretical analysis and the verification results, the
holistic speedups of these four improvements to the SUGAR code
is about 5–32. The speedup of iteration optimization depends on
the number of multi-nuclide resonance iteration. It is about 1.6
for both the 3 � 3 PWR assembly problem and SCWR assembly
problem. The speedup of resonant nuclides grouping technique de-
pends on the number of resonant nuclides and number of resonant
nuclides groups. It is about 2.1 in the MOX fuel calculation with 6
resonant nuclides and about 4.7 in the SCWR assembly calculation
with 16 resonant nuclides. In this paper, the speedup of MMOC is
3.1–4.4 compared with the original solver. The results show that
the advanced model can effectively increase the calculation effi-
ciency of subgroup code SUGAR and meanwhile keeps enough
accuracy and geometric flexibility. It is also found that the more
the resonant nuclides are, the better the speedup is.

These improvement scan also be extended to other resonance
methods. The iteration optimization can be used in which the
two assumptions in Section 2.4 can be used in group iterations
when the transport equation or slowing down equation is em-
ployed as a solver for flux, including some multi-group resonance
method and wavelet expansion method. The resonant nuclides
grouping technique can be used in multi-group resonance calcula-
tion methods when there are many resonant nuclides in the multi-
nuclide resonance iteration.
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