
Annals of Nuclear Energy 108 (2017) 172–180
Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene
Improved discrete nodal transport method for treating void regions
http://dx.doi.org/10.1016/j.anucene.2017.04.048
0306-4549/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: yunzhao@mail.xjtu.edu.cn (Y. Li).
Zhitao Xu, Hongchun Wu, Yunzhao Li ⇑, Youqi Zheng
School of Nuclear Science and Technology, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, Shaanxi 710049, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 October 2016
Received in revised form 12 April 2017
Accepted 15 April 2017
Available online 10 May 2017

Keywords:
DNTM
Void regions
NEFD
Nodal
Discrete-ordinates
To solve neutron transport problems with void regions accurately and efficiently, the legacy discrete
nodal transport method (DNTM) was improved in three-dimensional Cartesian geometry. Firstly, the effi-
cient nodal-equivalent finite difference (NEFD) algorithm was modified, named M-NEFD, to directly treat
the zero total cross section in the denominator for void nodes. Furthermore, an angle projection discrete-
ordinates (APSN) method was proposed to combine with the NEFD algorithm, named APSN-NEFD, to treat
the void regions without sweeping the void nodes one by one. Thirdly, the angular sweeps within one
octant of both M-NEFD and APSN-NEFD were parallelized using OpenMP. Based on these improvements,
a discrete-ordinates nodal transport code named NECP-HONESTY has been developed in three-
dimensional Cartesian geometry. To test the performance of the method and the code, a fission-source
problem with two small void regions and a fixed-source problem with one large void region were pre-
sented in this paper by comparing with the Monte Carlo method. It has been demonstrated by the numer-
ical results that the improved DNTM can provide accurate eigenvalue and scalar flux, no matter directly
sweeping the void nodes with M-NEFD or skipping the void regions with APSN. In addition, compared
with M-NEFD, APSN-NEFD can efficiently reduce both computing time and storage requirement for prob-
lem with large void regions.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The idea of nodal methods had been implemented in transport
theory since late 1970s (Lawrence, 1986). Discrete nodal transport
method (DNTM) (Lawrence and Dorning, 1980) is one of the earli-
est nodal transport methods. It is characterized by the discrete-
ordinates (SN) approximation for angular variables and the nodal
transverse-integral approximation for spatial variables. After four
decades research and development, it has been improved from dif-
ferent aspects, among which the nodal-equivalent finite difference
(NEFD) algorithm (Badruzzaman, 1985) or the weighted diamond-
difference form of the nodal transport methods (Walters, 1986;
Azmy, 1988) reduce both storage requirement and computing
effort efficiently by improving the sweep and iteration strategies.
In addition, the anisotropic scattering could be treated by differen-
tial scattering cross sections with Legendre polynomials (Wu et al.,
1994). It has been implemented in Cartesian (Badruzzaman and
Xie, 1984; Azmy, 1988; Wu et al., 1994), hexagonal-Z (Ikeda and
Takeda, 1994; Takeda and Yamamoto, 2001) and arbitrary
triangular-Z (Lu and Wu, 2007) geometries.
Due to its advantages in computing accuracy and efficiency
especially for anisotropic problems, the discrete nodal transport
method in arbitrary triangular-Z geometry (Lu and Wu, 2007)
has been applied to fast reactor core (Xiao et al., 2015) and
accelerator-driven subcritical system (Zhou et al., 2014; He et al.,
2015) analyses. However, problem was encountered once void
regions appear, such as the FBR core in coolant loss condition
and shielding problem with void structures. The singularity of void
nodes originated from the NEFD equations due to the appearance
of the total cross section in the denominator. Cross sections with
small values were used to approximate the zero cross sections
for the problem with void regions, which introduces additional
errors and is unstable.

In this paper the singularity of void nodes was eliminated by
analytically deriving a complete form of the NEFD equations with
zero total cross section considered, named modified NEFD (M-
NEFD) algorithm. Considering the fact that the angular flux of void
nodes is always flat, however, M-NEFD is not economic in the sense
of computing time and storage especially for problem with large
void regions. As a consequence, a new method, named angle pro-
jection discrete-ordinates (APSN) method, was proposed to treat
void regions without sweeping them one by one, resulting the
APSN-NEFD algorithm. In this method, the angular flux distribution
within void regions along each discrete direction is flat and can be
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Fig. 1. Illustration of the APSN sweep strategy in 2-D geometry.

Fig. 2. Illustration of the projection relation in 3-D geometry.

Fig. 3. Illustration of a 2-D void region.
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represented by the angular flux on the void-region boundaries.
Angular-flux relations between outflow void boundary nodal-
surface (OVBNS) and inflow void boundary nodal-surface (IVBNS)
are pre-evaluated according to their projection relations before
iteratively solving the transport equation. These angular-flux rela-
tions are stored as a relation table and will be used to replace nodal
sweeps in void regions.

Correspondingly, a discrete-ordinates nodal transport code
named NECP-HONESTY (nuclear engineering computational phy-
sics laboratory - high order nodal-expansion SN code for three-
dimensional Cartesian geometry) has been developed in three-
dimensional Cartesian geometry based on the M-NEFD and
APSN-NEFD algorithms. In addition, there is an option to accelerate
the process of angular sweeps within one octant by employing the
OpenMP platform. It can be used to solve either fission- or fixed-
source problem. Anisotropic scattering, high order interior flux
and source can also be handled.

Basic theory and analyses of M-NEFD and APSN-NEFD will be
presented in Section 2. In Section 3, a fission-source problem with
two small void regions and a fixed-source problem with one large
void region will be presented to verify the improvements. Section 4
gives the conclusions of this paper.
2. Theory

After the classic DNTM is briefly introduced in Section 2.1, the
M-NEFD equations will be given in Section 2.2, while the theory
of APSN-NEFD will be introduced in Section 2.3. Section 2.4 com-
pares M-NEFD and APSN-NEFD. The parallelization using OpenMP
within one octant will be explained in Section 2.5.
2.1. The classic DNTM

Multi-group neutron transport equation in a cuboid node is as
following,

2l
Dx

@ug

@x
þ 2g
Dy

@ug

@y
þ 2n
Dz

@ug

@z
þ Rt;gug ¼ Sg ; �1 6 x; y; z 6 1; ð1Þ

where l, g and n are direction cosines relative to x, y and z axes
respectively in 3-D Cartesian geometry, Dx, Dy and Dz are nodal
dimensions (cm), g indexes the energy group, neutron flux ug

(cm�2�s�1) is a function of l, g, n, x, y and z, while Rt;g refers to
the total cross section (cm�1), and Sg stands for the neutron source
(cm�3�s�1).

Transverse-integral equation in x channel can be obtained by
integrating Eq. (1) over y and z channels:
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where
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�1
dydz; ð4Þ

Lx ¼ Lyx þ Lzx; ð5Þ
and Lx is the transverse leakage term for x channel. Note that the
energy group index g is omitted for simplification.

Taking uxð�1Þ as a known value for l > 0, Eq. (2) can be solved
analytically:



Fig. 4. Iteration and sweep flowchart.
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uxðxÞ ¼ uxð�1ÞEðxþ 1Þ

þ Dx
2l

EðxÞ
Z x

�1
½Sxðx0Þ � Lxðx0Þ�Eð�x0Þdx0; l > 0; ð6Þ

where

EðxÞ ¼ exp �RtDx
2l x

� �
: ð7Þ

The expression of uxð1Þ can be obtained from Eq. (6):

uxð1Þ ¼ uxð�1ÞEð2Þ þ Dx
2l

Eð1Þ
Z 1

�1
½Sxðx0Þ � Lxðx0Þ�Eð�x0Þdx0;l > 0:

ð8Þ
Approximating spatial variables with Legendre polynomials

yields
uxðxÞ ¼
XN
n¼0

2nþ 1
2

uxnPnðxÞ; ð9Þ

SxðxÞ ¼
XNS
n¼0

2nþ 1
2

SxnPnðxÞ; ð10Þ

LxðxÞ ¼
XNL
n¼0

2nþ 1
2

LxnPnðxÞ; ð11Þ

with

uxn ¼
Z 1

�1
uxðxÞPnðxÞdx; ð12Þ



Fig. 5. Configuration of the axially heterogeneous FBR core.

Table 1
Results of the axially heterogeneous FBR core.

Method Eigenvalue Time used/s Storage/MB

Value Percent error

Monte Carlo 1.01398 ±0.003 – –
M-NEFD 1.01315 �0.082 33.3 41
APSN-NEFD 1.01405 0.007 32.8 41

Table 2
Region-averaged flux results of the axially heterogeneous FBR core.

Region Monte Carlo M-NEFD APSN-NEFD

Flux (cm�2 s�1) Statistical error (%) Flux (cm�2 s�1) Error (%) Flux (cm�2 s�1) Error (%)

Internal blanket 1G 1.2258 � 10�5 0.04 1.2299 � 10�5 0.34 1.2326 � 10�5 0.56
2G 1.1076 � 10�4 0.02 1.1018 � 10�4 �0.52 1.1048 � 10�4 �0.26
3G 1.1814 � 10�4 0.02 1.1749 � 10�4 �0.55 1.1792 � 10�4 �0.19
4G 7.0838 � 10�6 0.06 7.0513 � 10�6 �0.46 7.0785 � 10�6 �0.07

Core 1G 1.9449 � 10�5 0.01 1.9446 � 10�5 �0.01 1.9429 � 10�5 �0.10
2G 1.1209 � 10�4 0.01 1.1217 � 10�4 0.07 1.1214 � 10�4 0.05
3G 8.1350 � 10�5 0.01 8.1285 � 10�5 �0.08 8.1346 � 10�5 �0.01
4G 3.2406 � 10�6 0.03 3.2350 � 10�6 �0.17 3.2384 � 10�6 �0.07

Radial blanket 1G 1.4341 � 10�6 0.05 1.4378 � 10�6 0.26 1.4344 � 10�6 0.02
2G 1.5290 � 10�5 0.02 1.5296 � 10�5 0.04 1.5268 � 10�5 -0.14
3G 1.9846 � 10�5 0.02 1.9860 � 10�5 0.07 1.9828 � 10�5 �0.09
4G 1.6558 � 10�6 0.05 1.6588 � 10�6 0.18 1.6562 � 10�6 0.02

Axial blanket 1G 2.8298 � 10�6 0.04 2.8427 � 10�6 0.46 2.8441 � 10�6 0.51
2G 2.9291 � 10�5 0.02 2.9238 � 10�5 �0.18 2.9224 � 10�5 �0.23
3G 3.4418 � 10�5 0.02 3.4378 � 10�5 �0.12 3.4323 � 10�5 �0.28
4G 3.5690 � 10�6 0.04 3.5647 � 10�6 �0.12 3.5551 � 10�6 �0.39
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Sxn ¼
Z 1

�1
SxðxÞPnðxÞdx; ð13Þ
Lxn ¼
Z 1

�1
LxðxÞPnðxÞdx; ð14Þ

where N, NS and NL are the expansion orders of flux, source and
transverse leakage terms respectively. In this paper, only NL ¼ 0 is
considered. Substituting Eqs. (9)–(11) in Eq. (8), the outgoing
surface-flux becomes:
uxð1Þ ¼ uxð�1ÞEð2Þ þ
XNS
n¼0

FxnþSxn � Fx0þLx0;l > 0; ð15Þ

where

Fxnþ ¼ Dx
2l

2nþ 1
2

Eð1Þ
Z 1

�1
PnðxÞEð�xÞdx; ð16Þ

Lx0 ¼ 2n
Dz

½uzð1Þ �uzð�1Þ� þ 2g
Dy

½uyð1Þ �uyð�1Þ�; ð17Þ
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and the sign + in Fxnþ means that the coefficient Fxnþ is for l > 0.
Substituting Eqs. (9)–(11) in Eq. (6) and using the orthogonality of
Legendre polynomials, the nodal interior flux moment is obtained
as:

uxk ¼ uxð�1ÞGxkþ þ
XNS
n¼0

GxknþSxn � Gxk0þLx0; k ¼ 0;1; . . . ;N;l > 0;

ð18Þ
where

Gxkþ ¼
Z 1

�1
Eðxþ 1ÞPkðxÞdx; ð19Þ

Gxknþ ¼ Dx
2l

2nþ 1
2

Z 1

�1
EðxÞ½

Z x

�1
Pnðx0ÞEð�x0Þdx0�PkðxÞdx: ð20Þ

The M-NEFD equations will be derived based on the above clas-
sical DNTM equations.

2.2. The M-NEFD algorithm

Eliminating Sx0 in Eq. (15) with Eq. (18) when k ¼ 0, one obtains

uxð1Þ ¼ ð1� AxþÞuxð�1Þ þ Bxþuþ
XNS
n¼1

CxnþSxn;l > 0; ð21Þ

where

Axþ ¼ �Eð2Þ þ Fx0þð1ÞGx0þ
Gx00þ

þ 1; ð22Þ

Bxþ ¼ 2Fx0þð1Þ
Gx00þ

; ð23Þ

Cxnþ ¼ Fxnþð1Þ � Fx0þð1ÞGx0nþ
Gx00þ

: ð24Þ

Eliminating Sx0 in Eq. (18) when k > 0 with Eq. (18) when k ¼ 0,
one obtains

uxk ¼ Uxkþuxð�1Þ þ Vxkþuþ
XNS
n¼1

Wxkn�Sxn; k ¼ 1;2; . . . ;N;l > 0;

ð25Þ
where

Uxkþ ¼ Gxkþ � Gxk0þGx0þ
Gx00þ

� �
; ð26Þ

Vxkþ ¼ 2Gxk0þ
Gx00þ

; ð27Þ

Wxknþ ¼ Gxknþ � Gxk0þGx0nþ
Gx00þ

: ð28Þ

Eqs. (21) and (25) form the nodal response relation in x channel
when l > 0. Similar equations can be obtained for x channel with
l < 0, for y channel with g > 0 or g < 0, and for z channel with
n > 0 or n < 0 .

Integrating Eq. (1) over x, y and z channel, neutron balance
equation in one node is obtained:

l
Dx

½uxð1Þ �uxð�1Þ� þ g
Dy

½uyð1Þ �uyð�1Þ�

þ n
Dz

½uzð1Þ �uzð�1Þ� þ Rtu ¼ S: ð29Þ
Eliminating the outgoing surface-fluxes in Eq. (29) with Eq. (21)
and it’s counterparts for other combinations of cosines and chan-
nels, one obtains

u¼ Sþjlj
Dx

½Axuxðf lÞ�
XNS
n¼1

CxnSxn�þ
(

jgj
Dy

Ayuyðf gÞ�
XNS
n¼1

CynSyn

" #

þjnj
Dz

Azuzðf nÞ�
XNS
n¼1

CznSzn

" #)
jlj
Dx

Bxþ jgj
Dy

Byþ jnj
Dz

BzþRt

� ��
; ð30Þ

where

f v ¼ �sgnv ;v ¼ l;g; n; ð31Þ
Au ðu ¼ x; y; zÞ equals to Au� with the sign � determined the by f v ,
and the same rule suits for Bu and Cnu, and sgn is the signum
function.

For a given neutron flux direction ðl;g; nÞ, nodal-sweep
sequence is ensured by the continuous conditions between adja-
cent nodes and boundary conditions. For a given node and a given
direction, three incoming surface-fluxes are known while three
outgoing surface-fluxes are intended to be updated. The nodal
average flux is computed first with Eq. (30). Then the outgoing
surface-fluxes are computed with Eq. (21) and it’s counterparts.
High order flux moments are updated with Eq. (25) and it’s coun-
terparts after the nodal average scattering-source iteration.

Method to obtain the complete form of the related integration
coefficients will be given as below. Legendre polynomials can be
written as following:

PnðxÞ ¼
Xn
n0¼0

pn0�nx
n0 ; ð32Þ

where pn0�n refers to the coefficient of orthogonal polynomials. Sub-
stituting Eq. (32) in Eq. (16), (19) and (20) respectively, the coeffi-
cients for x channel and l > 0 are reformulated as below:

Fxnþ ¼ bxcxðnþ 0:5Þ
Xn

n0¼0

pn0�nI
ax
n0 ; ð33Þ

Gxkþ ¼ cx
Xk

k0¼0

pk0�kI
�ax
k0 ; ð34Þ

Gxknþ ¼ bxðnþ 0:5Þ
Xn
n0¼0

Xk

k0¼0

pn0�npk0�kJk0n0 ; ð35Þ

where

bx ¼ Dx
2jlj ; ð36Þ

ax ¼ Rtbx; ð37Þ

cx ¼ e�ax ; ð38Þ

Iaxn0 ¼
Z 1

�1
xn

0
eaxxdx; ð39Þ

I�ax
k0 ¼

Z 1

�1
xk

0
e�axxdx; ð40Þ

Jk0n0 ¼
Z 1

�1
xk

0
e�a
xx

Z x

�1
x0n0eaxx

0
dx0

� �
dx: ð41Þ

After mathematical simplifications, one can obtain the complete
form of the integrations Iaxn and Jkn as following:
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Iaxn ¼ ð�1Þnþ1eax
Xn
l¼0

ð�1Þlþ1

an�lþ1
x

n!
l!
þ ð�1Þnþ1e�ax

Xn
l¼0

1
an�lþ1
x

n!
l!
; ax > 0;

ð42Þ

Iaxn ¼ 2; n ¼ 0
0; n > 0

�
; ax ¼ 0; ð43Þ

I�ax
n ¼ ð�1ÞnIaxn ; ð44Þ

Jkn ¼ ð�1Þnþ1
Xn

l¼0

ð�1Þlþ1

an�lþ1
x

n!
l!

1� ð�1Þlþkþ1

lþ kþ 1

þ ð�1Þnþ1e�ax I�ax
k

Xn
l¼0

1
an�lþ1
x

n!
l!
; ax > 0; ð45Þ

Jkn ¼ 4; kþ n ¼ 0
0; kþ n > 0

�
; ax ¼ 0 ð46Þ

And the recursion form of the integrations as following:

Iax0 ¼ ðeax � e�ax Þ=ax; ax > 0; ð47Þ

Iaxn ¼ � n
ax

Iaxn�1 þ ðeax þ ð�1Þnþ1e�ax Þ=ax; ax > 0; ð48Þ

Jk0 ¼ 1� ð�1Þkþ1

kþ 1
� e�ax I�ax

k

" #
=ax; ax > 0; ð49Þ

Jkn ¼ � n
ax

Ikðn�1Þ þ 1� ð�1Þnþkþ1

nþ kþ 1
þ ð�1Þnþ1e�ax I�ax

k

" #
=ax; ax > 0:

ð50Þ
The relations between the coefficients for l < 0 and the coeffi-

cients for l > 0 are as following:

Fxn� ¼ ð�1ÞnFxnþ; ð51Þ

Gxk� ¼ ð�1ÞkGxkþ; ð52Þ

Gxkn� ¼ ð�1ÞkþnGxknþ: ð53Þ
Similar formulas can be obtained for y and z channels. For void

nodes with a ¼ 0, the integration coefficients were obtained using
Eqs. (43) and (46) instead of Eqs. (42) and (45), the M-NEFD equa-
tions still hold.
2.3. The APSN-NEFD algorithm

In this subsection, a new SN sweep strategy which eliminates
the nodal sweeps in large void regions is given and results the
APSN-NEFD algorithm when combined with the NEFD equations.
For a given direction X, non-void nodes are swept one by one
according to their adjacent relationships. For void nodes, the
incoming surface-fluxes of a node equal to the outgoing surface-
fluxes of its adjacent nodes or can be determined by the boundary
conditions. However, in the APSN method, the incoming surface-
flux of one node could be determined by the outgoing surface-
fluxes of several void boundary nodes. As illustrated in Fig. 1, in
a 2-D model with one void region, the incoming flux of surface 4
is determined by a part of the outgoing flux of surface 2 and the
outgoing flux of surface 3, the incoming flux of surface 5 is deter-
mined by parts of the outgoing fluxes of surface 1 and surface 2.

According to the neutron balance principle, the relation
between one OVBNS flux and several IVBNS fluxes for constant
surface-flux approximation can be derived as below:
uo ¼
XM
m¼1

uimx
X
im�o; ð54Þ

xX
im�o ¼

rim �X
ro �X

DSim�o

DSo
; ð55Þ

where uo is the OVBNS flux, M is the total number of IVBNS related
to uo according to the angle projection relations, uim is the mth
IVBNS flux, xX

im�o is the weight of uim to uo in the direction of X,
rim is the normal vector of the mth IVBNS, ro is the normal vector
of the OVBNS, X is the unit vector of a discrete direction, DSim�o is
the area of the part that neutron can reach the OVBNS from the
mth IVBNS, DSo is the area of the OVBNS.

A relation table can be pre-evaluated by angle-projection rela-
tions to store all the weights xX

im�o before nodal sweeps. The algo-
rithm to get the relation table involves the knowledge of
computational geometry (Preparata and Shamos, 1985) and can
be vital for the computing efficiency. For a given OVBNS and a
given X, if an IVBNS overlaps the projection of this OVBNS along
the direction X, this IVBNS is related to the OVBNS and the overlap
area and the weight can be calculated by using Eq. (55). As illus-
trated in Fig. 2, the projection of one OVBNS overlaps four IVBNS,
four times polygon overlap calculations are needed.
2.4. Comparison of M-NEFD and APSN-NEFD

The accuracies of both M-NEFD and APSN-NEFD can be sepa-
rated into two parts, namely the void regions and the non-void
regions. For non-void regions, the accuracy depends on the spatial
and angular discretization, which is the same for the two algo-
rithms. In contrast, for void regions, their spatial and angular dis-
cretization is different. For convenience the following discussions
will consider the case of 2-D geometry with l > 0 and g > 0, but
the conclusion maintain valid for other cases.

First consider the spatial discretization errors of the two algo-
rithms in void regions. Since Eq. (54) is derived using the neutron
balance principle, the void-region spatial discretization error of
APSN-NEFD is determined only by the void boundary nodal-
surface (VBNS) discretization error which depends on the spatial
discretization in non-void regions. In contrast, void-nodal sweeps
in M-NEFD causes additional error. In one void node, Eq. (30)
becomes

u ¼ l0uxð�1Þ þ g0uyð�1Þ; ð56Þ
where

l0 ¼ jljDy
jljDyþ jgjDx ; ð57aÞ

g0 ¼ jgjDx
jljDyþ jgjDx ; ð57bÞ

l0 þ g0 ¼ 1: ð57cÞ
Meanwhile, Eq. (21) becomes

uxð1Þ ¼ u: ð58Þ
Substituting Eq. (56) in Eq. (58) and it’s counterpart in y chan-

nel, the outgoing surface-flux given by M-NEFD is:

uxð1Þ � uyð1Þ ¼ l0uxð�1Þ þ g0uyð�1Þ: ð59Þ
uxð1Þ � uy means that there is a flux-averaging effect in one

void node, which will induce approximation. However, for APSN-
NEFD, Eq. (54) gives



Fig. 6. Geometry of the fixed-source problem.
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uxð1Þ ¼
ð1� g0=l0Þuxð�1Þ þ ðg0=l0Þuyð�1Þ; l0 > g0

uyð�1Þ; l0 6 g0

(
ð60aÞ

uyð1Þ ¼
uxð�1Þ; g0 6 l0

ð1� l0=g0Þuyð�1Þ þ ðl0=g0Þuxð�1Þ; g0 > l0

(
ð60bÞ

Eqs. (60a) and (60b) are derived considering the neutron flight
law in the void node and with no additional approximation
induced. Thus the error caused by flux-averaging effect of M-
NEFD in one void node can be evaluated by subtracting Eqs.
(60a) and (60b) from Eq. (59) respectively. Considering x channel:

Duxð1Þ ¼
ðl0 þ 1=l0 � 2Þ½uxð�1Þ �uyð�1Þ�; 0:5 < l0 6 1
l0½uxð�1Þ �uyð�1Þ�; 0 6 l0 6 0:5

(
:

ð61Þ
Duxð1Þ will be non-zero except when l0 ¼ 0 or l0 ¼ 1 and can be
maximal when l0 ¼ g0, which are also true for Duyð1Þ. For a void
region with multiple void nodes, the error will be accumulated.

Then the angular discretization errors of the two algorithms in
void regions can also be analyzed. Both of the two algorithms deal
the angular variables with SN method which approximates the
angular variables with limited number of directions. The SN
method causes obvious flux distribution error and fluctuation
when the spatial singularity of source term (including possible fis-
sion source, scattering source and external source) in Eq. (1) is sig-
nificant, namely the ray effect. For problem with void regions,
there is no source except on the void boundary, which enhances
the ray effect for both M-NEFD and APSN-NEFD.

However, for M-NEFD the flux-averaging effect sometimes can
cancel out part of the ray effect. Taking a 2-D void region with nine
void nodes illustrated in Fig. 3 as an example and supposing only
one discrete direction X is used in the ðx > 0; y > 0Þ octant to
approximate the angular variables, for APSN-NEFD the neutrons
in surface 2 can’t reach surface 5 and surface 9, which exposes
the ray effect; while for M-NEFD the neutrons in surface 2 can
reach surface 5, surface 7 and surface 9 as illustrated by the follow-
ing equations derived with Eq. (59),

u5 ¼ l03u4 þ l02g0u1 þ l0g0u2 þ g0u3; ð62Þ

u7 ¼ 3l02g02u1 þ 2l0g02u2 þ g02u3 þ 3l03g0u4 þ l03u6; ð63Þ

u9 ¼6l02g03u1þ3l0g03u2þg03u3þ6l03g02u4þ3l03g0u6þl03u8:

ð64Þ
Actually, neutrons in surface 2 will reach surface 5 or surface 9

along a direction different from X if without the ray effect, which
means the error cancelation between the flux-averaging effect and
the ray effect is not a certainty.

As a conclusion, the accuracy of M-NEFD is determined by the
ray effect and the flux-averaging effect in the void region plus
the spatial and angular discretization in the non-void region; while
there is no flux-averaging effect in APSN-NEFD with only the ray
effect in the void region plus the spatial and angular discretization
in the non-void region.

2.5. The angular parallelization using OpenMP

Different angles in each octant of either M-NEFD or APSN-NEFD
can be separated in threading. Thus, OpenMP was employed to
parallelize them. The flowchart of fission-source (only for fission-
source problem) and scattering-source iterations is illustrated in
Fig. 4(a). The iteration process stops once both the maximum
errors of scattering and fission sources and the error of eigenvalue
k between two adjacent iterations satisfy the predefined criterion.
The flowchart of angular and spatial sweeps to update nodal aver-
age scattering source of the gth energy group is illustrated in Fig. 4
(b). The steps with gray background in Fig. 4(b) are paralleled using
the shared-memory programming model of OpenMP.

The ideal speedup of the shared-memory parallelization is
determined by the Amdahl’s law (Chapman et al., 2007) as below:

S ¼ 1
ðf par=P þ ð1� f parÞÞ

; ð65Þ

where f par is the parallel fraction of the code and P is the number of
processors. And the parallel efficiency is defined as:

E ¼ S=P: ð66Þ
From Eqs. (65) and (66), it can be seen that the speedup and

parallel efficiency are ideal for large problem with f par approximate
to 1. Actually, the speedup and parallel efficiency will be less
because extra CPU time is needed to create, start, stop and manage
the threads for parallel regions.
3. Results

A code named NECP-HONESTY was developed with both M-
NEFD and APSN-NEFD included for void regions in 3-D Cartesian
geometry. To simplify the complex geometry computation in void
regions of APSN-NEFD, only cuboid void regions was considered in
the code. Several cuboid void regions can be set to approximate
each complex void region. Numerous numerical tests have been
carried out with one fission-source problem with two small void
regions and one fixed-source problem with one large void region
presented in this paper. Reference solutions were provided by a
Monte Carlo code.
3.1. A fission-source problem with two small void regions

This is a variant of the axially heterogeneous FBR core (model 3)
in the NEACRP 3-D neutron transport benchmarks (Takeda and
Ikeda, 1991). The 1/8 core configuration is illustrated in Fig. 5.
The geometry and cross sections are the same as those of the
model 3. Different from model 3, two control rods are replaced
with two void regions.



Table 3
Results of the fixed-source problem.

Method Region-averaged flux/cm�2�s�1 CPUb Time/s Storage

Source Shield Total Iteration Setup /GB

Monte Carlo 7.066 2.742 � 10�2 – – – –
0.01a 0.01

M-NEFD 7.068 2.756 � 10�2 637.8 636.2 0.3 11.9
0.03 0.51

APSN-NEFD 7.068 2.745 � 10�2 300.3 219.8 79.9 4.8
0.03 0.11

a Percent error.
b Intel� Xeon� CPU E5-2620 @ 2.10 GHz.
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S4 Legendre-Chebyshev quadrature was used, the expansion
order of interior flux and source are both 2. The nodal dimensions
are 5 cm in both x and y directions, while the nodal dimensions in z
direction from the bottom to the top are 5, 5, 9, 9, 9, 9, 9, 8, 8, 9 and
10 cm. Three CPU processors (Intel� Xeon� CPU E5-2620 @
2.10 GHz) were used. About 88% parallel efficiency is obtained
for this problem. Table 1 displays the results of calculated eigen-
value and their errors, computing time and storage requirements
with different algorithms. Table 2 displays the results of region-
averaged fluxes. Both M-NEFD and APSN-NEFD can provide accu-
rate results. M-NEFD gives a -0.082% eigenvalue error, while APSN
gives a smaller 0.007% eigenvalue error. All the region-averaged
flux errors are within 0.56% for the two algorithms. Almost equal
computing time and storage are used by the two options. Due to
the extra CPU time for projection relation preprocessing and Eq.
(54) implementation during iteration and the extra storage for
the relation table, APSN-NEFD doesn’t show advantages as for com-
puting time and storage requirements for this problem with small
void regions.
3.2. A fixed-source problem with one large void region

This problem is a 3-D fixed-source problem with three regions
as illustrated in Fig. 6. The inner source region is a
10� 10� 10 cm3 cuboid. The void region is a 90� 90� 90 cm3

cuboid excluding the source region. The outer shell is a shielding
region. One energy group macroscopic cross sections are provided.
For the source and shielding regions, the total cross section is
0.1 cm�1 and the scattering cross section is 0.05 cm�1. The source
intensity is 1:0 cm�3s�1. Reflective boundary conditions are used
on the left (OCGE), near (OBFE), bottom (OBDC) boundaries, while
vacuum boundary conditions for the other three boundaries.
Fig. 7. Flux distribution along boundary line GH.
S32 Legendre-Chebyshev quadrature was used to minimize the
ray effect, the expansion orders of interior flux and source are 1,
while the nodal dimensions are 2 cm with one CPU processor
employed. For APSN-NEFD, the void region is approximated by
one 80� 88� 88 cm3 cuboid and one 6� 88� 80 cm3 cuboid.
Table 3 displays the results of region-averaged fluxes and their
errors, CPU time and storage requirements with different algo-
rithms. The errors in the source region given by both M-NEFD
and APSN-NEFD are 0.03%. For the shielding region, M-NEFD gives
a 0.51% error, while APSN-NEFD gives a smaller 0.11% error. Fig. 7
shows the flux distributions on the boundary line GH obtained by
different algorithms. The flux distribution errors of both algorithms
are obvious due to the strong ray effect and M-NEFD gives less fluc-
tuant result due to the cancellation of the flux-averaging effect and
the ray effect as analysed in Section 2.4. In terms of CPU time, M-
NEFD spends 637.8 s in total while APSN-NEFD spends 300.3 s in
total, 53% less than the former. For M-NEFD, the iteration time is
636.2 s and the setup time is nearly zero. For APSN-NEFD, the iter-
ation time is 219.8 s and the setup time is 79.9 s. The storage
requirement of M-NEFD is 11.9 GB while that of APSN-NEFD is
4.8 GB, 60% less than the former mainly due to the fact that there
is no need to store the nodal response information for void nodes.
Although 66% of void-nodal sweeps are eliminated by the APSN
option, extra CPU time is required to process the relation table in
the setup stage and to implement Eq. (54) in the iteration stage,
and extra storage is needed to store the relation table.
4. Conclusions

Improvements have been made to the discrete nodal transport
method (DNTM) for solving neutron transport problems with void
regions in 3-D Cartesian geometry. The effective nodal-equivalent
finite difference (NEFD) algorithm has been investigated, singular-
ity of void nodes was found in NEFD equations due to the appear-
ance of total cross section in the denominator. The NEFD equations
were modified, named M-NEFD, to directly sweep the void nodes
by removing the total cross section to the integration coefficients.
A complete form of the integration coefficients considering zero
total cross section was derived. As a further research, a new algo-
rithm named APSN-NEFD (angle projection discrete-ordinates -
NEFD) was developed to treat problems with large void regions.
It eliminates void-nodal sweeps by using a pre-evaluated relation
table of the void boundary nodal-surface fluxes.

A 3-D nodal-transport code named NECP-HONESTY was devel-
oped using the M-NEFD algorithm and the APSNmethod as options
to treat problems with void regions. A 3-D fission-source problem
with two small void regions and a 3-D fixed-source problem with
one large void region were presented in this paper to test the new
code. In terms of eigenvalue and region-averaged fluxes, both M-
NEFD and APSN-NEFD can give accurate results compared with
Monte Carlo method. And APSN-NEFD can efficiently reduce the
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computing time and storage requirements for problem with large
void regions.

Both M-NEFD and APSN-NEFD can be used to treat fission-
source problems with void regions. Although the APSN method
can expose the ray effect observed in this paper, elimination of
void-nodal sweeps will make it possible for direct reactor building
calculation and other applications with large void regions. Further
work to eliminate the ray effect of the APSN method is expected.
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